Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(1\).

a) \(\overrightarrow {BD} = \overrightarrow {B'D'} \).
b) \(\left| {\overrightarrow {A'C} } \right| = \left| {\overrightarrow {AC'} } \right| = \sqrt 3 \).
c) \(\overrightarrow {A'C} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {D'D} \).
d) \(\overrightarrow {A'C} \cdot \overrightarrow {BD} = \sqrt 2 \).
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(1\).
a) \(\overrightarrow {BD} = \overrightarrow {B'D'} \).
b) \(\left| {\overrightarrow {A'C} } \right| = \left| {\overrightarrow {AC'} } \right| = \sqrt 3 \).
c) \(\overrightarrow {A'C} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {D'D} \).
d) \(\overrightarrow {A'C} \cdot \overrightarrow {BD} = \sqrt 2 \).
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) Đ, d) S.
Hướng dẫn giải
– Vì \(ABCD.A'B'C'D'\) là hình lập phương nên \(BDD'B'\) là hình chữ nhật.
Suy ra \(\overrightarrow {BD} = \overrightarrow {B'D'} \). Do đó, ý a) đúng.
– Ta có: \(A'C' = \sqrt {A'{{B'}^2} + B'{{C'}^2}} = \sqrt 2 \); \(A'C = \sqrt {A'{{C'}^2} + C{{C'}^2}} = \sqrt 3 \).
Suy ra \(\left| {\overrightarrow {A'C} } \right| = A'C = \sqrt 3 \). Tương tự, \(\left| {\overrightarrow {AC'} } \right| = AC' = \sqrt 3 \).
Vậy ý b) đúng.
– Theo quy tắc hình hộp, ta có: \(\overrightarrow {A'C} = \overrightarrow {A'B'} + \overrightarrow {A'D'} + \overrightarrow {A'A} \).
Mà \(\overrightarrow {A'B'} = \overrightarrow {AB} ,\,\overrightarrow {A'D'} = \overrightarrow {AD} ,\,\,\overrightarrow {A'A} = \overrightarrow {D'D} \). Do đó, \(\overrightarrow {A'C} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {D'D} \).
Vậy ý c) đúng.
– Ta có: \(\overrightarrow {A'C} \cdot \overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {DD'} } \right) \cdot \left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)
\( = \overrightarrow {AB} \cdot \overrightarrow {AD} - {\overrightarrow {AB} ^2} + {\overrightarrow {AD} ^2} - \overrightarrow {AD} \cdot \overrightarrow {AB} + \overrightarrow {DD'} \cdot \overrightarrow {AD} - \overrightarrow {DD'} \cdot \overrightarrow {AB} \)
\( = 0 - {1^2} + {1^2} - 0 + 0 - 0 = 0\).
Vậy \(\overrightarrow {A'C} \cdot \overrightarrow {BD} = 0\), do đó ý d) sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vẽ \(\overrightarrow {OA} = \overrightarrow {{F_1}} ,\,\,\overrightarrow {OB} = \overrightarrow {{F_2}} ,\,\,\overrightarrow {OC} = \overrightarrow {{F_3}} \).
Dựng hình bình hành \(OADB\) và hình bình hành \(ODEC\).
Hợp lực tác động vào vật là \(\overrightarrow F = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).
Áp dụng định lí côsin trong tam giác \(OBD\), ta có:
\(O{D^2} = B{D^2} + O{B^2} - 2BD \cdot OB \cdot \cos \widehat {OBD} = O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ \)
Vì \(OC \bot \left( {OADB} \right)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật.
Do đó, tam giác \(ODE\) vuông tại \(D\).
Ta có \(O{E^2} = O{C^2} + O{D^2} = O{C^2} + O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ \).
Suy ra \(O{E^2} = \sqrt {O{C^2} + O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ } \)
\( = \sqrt {{{10}^2} + {{20}^2} + {{15}^2} + 2 \cdot 20 \cdot 15 \cdot \cos 135^\circ } \approx 17,3\).
Vậy độ lớn của hợp lực là \(F = OE \approx 17,3\) N.
Đáp số: \(17,3\).
Lời giải
a) S, b) S, c) Đ, d) Đ.
Hướng dẫn giải
Xét hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}} = x + 1 + \frac{1}{{x + 2}}\).
– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).
– Ta có \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\); \(y' = 0\) khi \(x = - 3\) hoặc \(x = - 1\).
Bảng biến thiên của hàm số như sau:
– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.
– Hàm số đã cho đạt cực đại tại \(x = - 3\), ; đạt cực tiểu tại \(x = - 1\), \({y_{CT}} = 1\).
Suy ra . Do đó, ý b) sai.
– Tiệm cận:
+) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x = - 2\).
+) Tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng \(y = x + 1\).
Với \(x = 0\) thì \(y = 0 + 1 = 1\), do đó đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\). Vậy ý c) đúng.
– Đường thẳng \(x - 3y - 6 = 0\)\( \Leftrightarrow y = \frac{1}{3}x - 2\) có hệ số góc \({k_1} = \frac{1}{3}\). Đường thẳng này vuông góc với tiếp tuyến của đồ thị hàm số đã cho nên tiếp tuyến này có hệ số góc \({k_2} = \frac{{ - 1}}{{{k_1}}} = - 3\).
Khi đó, với \({x_0}\) là hoành độ của tiếp điểm thì \(y'\left( {{x_0}} \right) = \frac{{x_0^2 + 4{x_0} + 2}}{{{{\left( {{x_0} + 2} \right)}^2}}} = - 3\).
Ta tìm được \({x_0} = - \frac{5}{2}\) hoặc \({x_0} = - \frac{3}{2}\).
+) Với \({x_0} = - \frac{5}{2}\), ta có tiếp tuyến: \(y = - 3x - 11\).
+) Với \({x_0} = - \frac{3}{2}\), ta có tiếp tuyến: \(y = - 3x - 3\), tiếp tuyến này đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).
Do đó, ý d) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.