Một chất điểm chuyển động trong \(20\) giây đầu tiên có phương trình như sau:
\(s\left( t \right) = \frac{1}{{12}}{t^4} - {t^3} + 6{t^2} + 10t,\)
trong đó \(t > 0\) với \(t\) tính bằng giây \(\left( s \right)\) và \(s\left( t \right)\) tính bằng mét \(\left( m \right)\). Hỏi tại thời điểm gia tốc đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Một chất điểm chuyển động trong \(20\) giây đầu tiên có phương trình như sau:
\(s\left( t \right) = \frac{1}{{12}}{t^4} - {t^3} + 6{t^2} + 10t,\)
trong đó \(t > 0\) với \(t\) tính bằng giây \(\left( s \right)\) và \(s\left( t \right)\) tính bằng mét \(\left( m \right)\). Hỏi tại thời điểm gia tốc đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vận tốc của chuyển động là: \(v\left( t \right) = s'\left( t \right) = \frac{1}{3}{t^3} - 3{t^2} + 12t + 10.\)
Gia tốc của chuyển động là: \(a\left( t \right) = v'\left( t \right) = {t^2} - 6t + 12 = {\left( {t - 3} \right)^2} + 3.\)
Nhận thấy \({t^2} - 6t + 12 = {\left( {t - 3} \right)^2} + 3 \ge 3\).
Dấu xảy ra khi \(t = 3\).
Vậy gia tốc đạt giá trị nhỏ nhất tại \(t = 3\left( s \right)\).
Khi đó vận tốc của vật bằng: \(v\left( 3 \right) = 28\left( {m/s} \right).\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Xét hàm số \(y = \frac{{{x^2} + x + 1}}{{x - 1}}\):
Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}.\)
Ta có: \(y = \frac{{{x^2} + x + 1}}{{x - 1}} = x + 2 + \frac{3}{{x - 1}}\)
\(y' = \frac{{{x^2} - 2x - 2}}{{{{\left( {x - 1} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 - \sqrt 3 \\x = 1 + \sqrt 3 \end{array} \right.\).
Đồ thị hàm số có tiệm cận đứng \(x = 1\) và tiệm cận xiên \(y = x + 2.\)
Ta có bảng biến thiên:
Từ bảng biến thiên, ta thấy hàm số có 2 cực trị.
Quan sát các đồ thị đã cho, ta thấy đồ thị ở phương án A thỏa mãn.
Lời giải
Đáp án đúng là: C
Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 2}}{{x + 1}} = - \infty \) và \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 2}}{{x + 1}} = + \infty \) nên đường thẳng \(x = - 1\)là tiệm cận đứng của đồ thị hàm số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.