Câu hỏi:

10/10/2024 1,882

Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá \(50000\) đồng/ quả. Với giá bán này thì cửa hàng chỉ bán được \(40\) quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả \(5000\) đồng thì số bưởi bán được tăng thêm là \[50\] quả. Xác định giá bán để cửa hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả bưởi là \(30000\) đồng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\) là giá bán thực tế của mỗi quả bưởi Đoan Hùng \(\left( {30000 \le x \le 50000} \right)\), đơn vị: đồng.

Theo đề ta có:

Nếu bán với giá \(50000\) đồng thì bán được \(40\) quả bưởi

Giảm giá \(5000\) đồng thì bán được thêm \[50\] quả.

Giảm giá \(50000 - x\) thì bán được thêm bao nhiêu quả?

Khi đó, số quả bưởi được bán thêm là: \(\left( {50000 - x} \right)\frac{{50}}{{5000}} = \frac{1}{{100}}\left( {50000 - x} \right)\).

Do đó, số quả bưởi bán được tương ứng với giá bán \(x\):

\(40 + \frac{1}{{100}}\left( {50000 - x} \right) = \frac{{ - 1}}{{100}}x + 540\).

Gọi \(F\left( x \right)\) là hàm lợi nhuận thu được (\(F\left( x \right)\): đồng).

Ta có: \(F\left( x \right) = \left( {\frac{{ - 1}}{{100}}x + 540} \right)\left( {x - 30000} \right) = \frac{{ - 1}}{{100}}{x^2} + 840x - 16200000\).

Lúc này, bài toán trở thành tìm GTLN của hàm số:

\(F\left( x \right) = \frac{{ - 1}}{{100}}{x^2} + 840x - 16200000\) với \(30000 \le x \le 50000\).

\(F'\left( x \right) = \frac{{ - 1}}{{50}}x + 840\)

\(F'\left( x \right) = 0 \Leftrightarrow \frac{{ - 1}}{{50}}x + 840 = 0 \Leftrightarrow x = 42000\).

Vì hàm \(F\left( x \right)\) liên tục trên \(\left[ {30000;\,50000} \right]\) nên ta có:

\(F\left( {30000} \right) = 0\)

\(F\left( {42000} \right) = 1440000\)

\(F\left( {50000} \right) = 800000\).

Vậy với \(x = 42000\) thì \(F\left( x \right)\) đạt GTLN.

Vậy để cửa hàng thu được lợi nhuận lớn nhất thì giá bán thực tế của mỗi quả bưởi Đoan Hùng là \(42000\) đồng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chất điểm chuyển động trong \(20\) giây đầu tiên có phương trình như sau:

\(s\left( t \right) = \frac{1}{{12}}{t^4} - {t^3} + 6{t^2} + 10t,\)

trong đó \(t > 0\) với \(t\) tính bằng giây \(\left( s \right)\)\(s\left( t \right)\) tính bằng mét \(\left( m \right)\). Hỏi tại thời điểm gia tốc đạt giá trị nhỏ nhất thì vận tốc bằng bao nhiêu?

Xem đáp án » 10/10/2024 7,431

Câu 2:

Đường cong nào dưới đây là đồ thị của hàm số \(y = \frac{{{x^2} + x + 1}}{{x - 1}}\)?

Xem đáp án » 10/10/2024 5,027

Câu 3:

Tiệm cận đứng của đồ thị hàm số \(y = \frac{{2x - 2}}{{x + 1}}\) là đường thẳng:

Xem đáp án » 10/10/2024 2,426

Câu 4:

 Cho hàm số \(y = {x^3} - 2{x^2} + \left( {m - 1} \right)x + 2m\) có đồ thị \(\left( C \right)\). Tìm \(m\) để tiếp tuyến có hệ số góc nhỏ nhất của đồ thị \(\left( C \right)\) vuông góc với đường thẳng \(d:y = 3x + 2024.\)

Xem đáp án » 10/10/2024 982

Câu 5:

Cho tứ diện đều \(ABCD\) có cạnh bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,CD\). Tính \(\cos \left( {\overrightarrow {AC} ,\overrightarrow {MN} } \right)\).

Xem đáp án » 10/10/2024 672

Câu 6:

Giá trị lớn nhất \(M\), giá trị nhỏ nhất \(m\) của hàm số \(y = {\sin ^4}x - 4{\sin ^2}x + 5\) là:

Xem đáp án » 10/10/2024 573
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay