Câu hỏi:
11/10/2024 312Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)
Quảng cáo
Trả lời:
Đáp án đúng là: B
Cách 1. ⦁ Thay \(m = 1\) vào hệ phương trình đã cho, ta được hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\3x + 2y = 7\end{array} \right.\]
Sử dụng máy tính cầm tay, ta lần lượt bấm các phím theo thứ tự:
Trên màn hình hiện ra kết quả \(x = - 1,\) ấn thêm phím = ta thấy màn hình hiện kết quả \(y = 5.\)
Như vậy, hệ phương trình đã cho có nghiệm là \(\left( { - 1;\,\,5} \right)\) và ta thấy \(x \ne y\). Do đó trường hợp \(m = 1\) không thỏa mãn yêu cầu đề bài.
⦁ Tương tự như trên, ta thay lần lượt các giá trị \(m\) vào hệ phương trình đã cho, sau đó sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình nhận được, thì thấy rằng chỉ có \(m = 2\) thỏa mãn yêu cầu đề bài.
Vậy \(m = 2.\)
Cách 2. Thay \[x = y\] vào hệ phương trình đã cho, ta được: \[\left\{ \begin{array}{l}2y + y = 3\\\left( {2m + 1} \right)y + 2y = 7\end{array} \right.\] hay \[\left\{ \begin{array}{l}3y = 3\\\left( {2m + 3} \right)y = 7\,\,\,\,\,\,\,\,\left( 1 \right)\end{array} \right.\]
Với \[3y = 3,\] ta có: \[y = 1.\]
Thay \[y = 1\] vào phương trình (1), ta được:
\[\left( {2m + 3} \right) \cdot 1 = 7\]
\[2m + 3 = 7\]
\[2m = 4\]
\[m = 2.\]
Vậy \[m = 2\] thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Cách 3. Xét hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\left( {2m + 1} \right)x + 2y = 7\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (1) ta có: \(y = 3 - 2x\).
Thế \(y = 3 - 2x\) vào phương trình (2), ta được:
\[\left( {2m + 1} \right)x + 2\left( {3 - 2x} \right) = 7\]
\(\left( {2m + 1} \right)x + 6 - 4x = 7\)
\(\left( {2m - 3} \right)x = 1\,\,\,\left( * \right)\)
Để hệ phương trình có nghiệm duy nhất thì phương trình \(\left( * \right)\) phải có nghiệm duy nhất, điều này xảy ra khi và chỉ khi \(2m - 3 \ne 0\) hay \[m \ne \frac{3}{2}\].
Khi đó giải phương trình \(\left( * \right)\) ta được: \[x = \frac{1}{{2m - 3}}\].
Thay \[x = \frac{1}{{2m - 3}}\] vào phương trình \(y = 3 - 2x\) ta được:
\[y = 3 - 2 \cdot \frac{1}{{2m - 3}} = \frac{{6m - 9}}{{2m - 3}} - \frac{2}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\].
Để hệ phương trình có nghiệm duy nhất \(x = y\) thì \[\frac{1}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\].
Giải phương trình chứa ẩn \(m\) ở mẫu:
\[\frac{1}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\]
\(1 = 6m - 11\)
\(6m = 12\)
\[m = 2\] (thỏa mãn \[m \ne \frac{3}{2})\]
Vậy \(m = 2\) thỏa mãn yêu cầu đề bài.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có: \[\left\{ \begin{array}{l}mx + 2my = m + 1\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x + \left( {m + 1} \right)y = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (2), ta có: \[x = 2 - \left( {m + 1} \right)y.\]
Thay \[x = 2 - \left( {m + 1} \right)y\] vào phương trình (1), ta được:
\[m\left[ {2 - \left( {m + 1} \right)y} \right] + 2my = m + 1\]
\[2m - \left( {{m^2} + m} \right)y + 2my = m + 1\]
\[\left( { - {m^2} + m} \right)y = - m + 1\]
\[ - m\left( {m - 1} \right)y = - \left( {m - 1} \right)\]
Để phương trình có nghiệm duy nhất thì \[m \ne 0\] và \[m \ne 1.\]
Khi đó ta có \[y = \frac{{ - \left( {m - 1} \right)}}{{ - m\left( {m - 1} \right)}} = \frac{1}{m}.\]
Suy ra \[x = 2 - \left( {m + 1} \right) \cdot \frac{1}{m} = \frac{{2m - m - 1}}{m} = \frac{{m - 1}}{m}.\]
Vì vậy \[A = x - y = \frac{{m - 1}}{m} - \frac{1}{m} = 1 - \frac{1}{m} - \frac{1}{m} = 1 - \frac{2}{m}.\]
Với \(m \in \mathbb{Z},\) để biểu thức \[A\] nhận giá trị nguyên thì \[\frac{2}{m}\] nhận giá trị nguyên.
Suy ra \[m \in \]Ư\[\left( 2 \right) = \left\{ { - 2; - 1;1;2} \right\}.\]
So với điều kiện \[m \ne 0\] và \[m \ne 1,\] ta nhận \[m \in \left\{ { - 2; - 1;2} \right\}.\]
Vậy có 3 giá trị của \(m\) thỏa mãn yêu cầu đề bài, ta chọn phương án C.
Lời giải
Đáp án đúng là: B
Cách 1. Sử dụng máy tính cầm tay, ta lần lượt bấm các phím theo thứ tự:
Trên màn hình hiện ra kết quả \(x = - 2,\) ấn thêm phím ta thấy màn hình hiện kết quả \(y = 1.\)
Như vậy, hệ phương trình đã cho có nghiệm là \(\left( { - 2;\,\,1} \right)\).
Khi đó, \[{x^3} + {y^3} = {\left( { - 2} \right)^3} + {1^3} = - 7\].
Cách 2. Xét hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x - y = - 5\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ (1) suy ra \(x = 1 - 3y\). Thế \(x = 1 - 3y\) vào (2) ta được phương trình \(2\left( {1 - 3y} \right) - y = - 5\).
Giải phương trình:
\(2\left( {1 - 3y} \right) - y = - 5\)
\(2 - 6y - y = - 5\)
\( - 7y = - 7\)
\(y = 1\).
Thay \(y = 1\) vào phương trình \(x = 1 - 3y\), ta được: \(x = 1 - 3 \cdot 1 = - 2.\)
Như vậy, hệ phương trình đã cho có nghiệm là \(\left( { - 2;\,\,1} \right)\).
Khi đó, \[{x^3} + {y^3} = {\left( { - 2} \right)^3} + {1^3} = - 7\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.