Câu hỏi:
11/10/2024 184Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Cách 1. ⦁ Thay \(m = 1\) vào hệ phương trình đã cho, ta được hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\3x + 2y = 7\end{array} \right.\]
Sử dụng máy tính cầm tay, ta lần lượt bấm các phím theo thứ tự:
Trên màn hình hiện ra kết quả \(x = - 1,\) ấn thêm phím = ta thấy màn hình hiện kết quả \(y = 5.\)
Như vậy, hệ phương trình đã cho có nghiệm là \(\left( { - 1;\,\,5} \right)\) và ta thấy \(x \ne y\). Do đó trường hợp \(m = 1\) không thỏa mãn yêu cầu đề bài.
⦁ Tương tự như trên, ta thay lần lượt các giá trị \(m\) vào hệ phương trình đã cho, sau đó sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình nhận được, thì thấy rằng chỉ có \(m = 2\) thỏa mãn yêu cầu đề bài.
Vậy \(m = 2.\)
Cách 2. Thay \[x = y\] vào hệ phương trình đã cho, ta được: \[\left\{ \begin{array}{l}2y + y = 3\\\left( {2m + 1} \right)y + 2y = 7\end{array} \right.\] hay \[\left\{ \begin{array}{l}3y = 3\\\left( {2m + 3} \right)y = 7\,\,\,\,\,\,\,\,\left( 1 \right)\end{array} \right.\]
Với \[3y = 3,\] ta có: \[y = 1.\]
Thay \[y = 1\] vào phương trình (1), ta được:
\[\left( {2m + 3} \right) \cdot 1 = 7\]
\[2m + 3 = 7\]
\[2m = 4\]
\[m = 2.\]
Vậy \[m = 2\] thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Cách 3. Xét hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\left( {2m + 1} \right)x + 2y = 7\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (1) ta có: \(y = 3 - 2x\).
Thế \(y = 3 - 2x\) vào phương trình (2), ta được:
\[\left( {2m + 1} \right)x + 2\left( {3 - 2x} \right) = 7\]
\(\left( {2m + 1} \right)x + 6 - 4x = 7\)
\(\left( {2m - 3} \right)x = 1\,\,\,\left( * \right)\)
Để hệ phương trình có nghiệm duy nhất thì phương trình \(\left( * \right)\) phải có nghiệm duy nhất, điều này xảy ra khi và chỉ khi \(2m - 3 \ne 0\) hay \[m \ne \frac{3}{2}\].
Khi đó giải phương trình \(\left( * \right)\) ta được: \[x = \frac{1}{{2m - 3}}\].
Thay \[x = \frac{1}{{2m - 3}}\] vào phương trình \(y = 3 - 2x\) ta được:
\[y = 3 - 2 \cdot \frac{1}{{2m - 3}} = \frac{{6m - 9}}{{2m - 3}} - \frac{2}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\].
Để hệ phương trình có nghiệm duy nhất \(x = y\) thì \[\frac{1}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\].
Giải phương trình chứa ẩn \(m\) ở mẫu:
\[\frac{1}{{2m - 3}} = \frac{{6m - 11}}{{2m - 3}}\]
\(1 = 6m - 11\)
\(6m = 12\)
\[m = 2\] (thỏa mãn \[m \ne \frac{3}{2})\]
Vậy \(m = 2\) thỏa mãn yêu cầu đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của \[m\] để hệ phương trình \[\left\{ \begin{array}{l}mx + 2my = m + 1\\x + \left( {m + 1} \right)y = 2\end{array} \right.\] có nghiệm duy nhất \[\left( {x;y} \right)\] sao cho \[G = x - y\] nhận giá trị nguyên?
Câu 2:
Biết hệ phương trình \[\left\{ \begin{array}{l}ax - 3y = 1\\x + by = - 5\end{array} \right.\] nhận cặp số \(\left( {2;\,\, - 3} \right)\) là một nghiệm. Khi đó, giá trị của \(a,\,\,b\) là
Câu 3:
Cho hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\\2x - y = - 5\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng lập phương của \(x\) và \(y\) là
Câu 4:
Hệ phương trình \[\left\{ \begin{array}{l}x + y = 3\\x + 2y = - 5\end{array} \right.\] nhận cặp số nào sau đây là nghiệm?
Câu 5:
Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Câu 6:
Cho \(\left( {x;\,\,y} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}\frac{3}{x} + \frac{2}{y} = 7\\\frac{2}{x} - \frac{5}{y} = - 27\end{array} \right.\] và cùng với các khẳng định sau:
(i) Hệ phương trình cho điều kiện xác định là \(x \ne 0\) và \(y \ne 0.\)
(ii) Hệ phương trình có nghiệm là \(\left( { - 1;\,\,5} \right)\).
(iii) Tổng bình phương của \(x\) và \(y\) lớn hơn 20.
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!