Câu hỏi:

11/10/2024 142

Với giá trị nào của \[a,{\rm{ }}b\] để đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {1;\,\,13} \right)\) và \(B\left( { - 5;\,\,1} \right)?\)

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Vì đồ thị hàm số \(y = ax + b\) đi qua điểm \(A\left( {1;\,\,13} \right)\) nên ta có \(13 = a \cdot 1 + b\) hay \(a + b = 13\).

Vì đồ thị hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 5;\,\,1} \right)\) nên ta có \(1 = a \cdot \left( { - 5} \right) + b\) hay \( - 5a + b = 1\).

Khi đó, ta có hệ phương trình \[\left\{ \begin{array}{l}a + b = 13\\ - 5a + b = 1\end{array} \right.\]

Trừ từng vế của phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(6a = 12,\) suy ra \(a = 2.\)

Thay \(a = 2\) vào phương trình \(a + b = 13,\) ta được: \(2 + b = 13\) nên \(b = 11.\)

Vậy \(a = 2\) và \(b = 11.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của \[m\] để hệ phương trình \[\left\{ \begin{array}{l}mx + 2my = m + 1\\x + \left( {m + 1} \right)y = 2\end{array} \right.\] có nghiệm duy nhất \[\left( {x;y} \right)\] sao cho \[G = x - y\] nhận giá trị nguyên?

Xem đáp án » 11/10/2024 632

Câu 2:

II. Thông hiểu

Biết hệ phương trình \[\left\{ \begin{array}{l}ax - 3y = 1\\x + by = - 5\end{array} \right.\] nhận cặp số \(\left( {2;\,\, - 3} \right)\) là một nghiệm. Khi đó, giá trị của \(a,\,\,b\) là

Xem đáp án » 11/10/2024 338

Câu 3:

Cho hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\\2x - y = - 5\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng lập phương của \(x\) và \(y\) là

Xem đáp án » 11/10/2024 325

Câu 4:

III. Vận dụng

Cho \(\left( {x;\,\,y} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}\frac{3}{x} + \frac{2}{y} = 7\\\frac{2}{x} - \frac{5}{y} = - 27\end{array} \right.\] và cùng với các khẳng định sau:

(i) Hệ phương trình cho điều kiện xác định là \(x \ne 0\) và \(y \ne 0.\)

(ii) Hệ phương trình có nghiệm là \(\left( { - 1;\,\,5} \right)\).

(iii) Tổng bình phương của \(x\) và \(y\) lớn hơn 20.

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Xem đáp án » 11/10/2024 313

Câu 5:

Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)

Xem đáp án » 11/10/2024 251

Câu 6:

Hệ phương trình \[\left\{ \begin{array}{l}x + y = 3\\x + 2y = - 5\end{array} \right.\] nhận cặp số nào sau đây là nghiệm?

Xem đáp án » 11/10/2024 219

Câu 7:

Hệ phương trình \[\left\{ \begin{array}{l}3\left( {x + y} \right) + 2\left( {x - y} \right) = 6\\\left( {x + y} \right) + 3\left( {x - y} \right) = 4\end{array} \right.\] nhận cặp số nào sau đây là nghiệm?

Xem đáp án » 11/10/2024 160
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua