Câu hỏi:
11/10/2024 212Có bao nhiêu giá trị nguyên của \[m\] để hệ phương trình \[\left\{ \begin{array}{l}mx + 2my = m + 1\\x + \left( {m + 1} \right)y = 2\end{array} \right.\] có nghiệm duy nhất \[\left( {x;y} \right)\] sao cho \[G = x - y\] nhận giá trị nguyên?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \[\left\{ \begin{array}{l}mx + 2my = m + 1\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x + \left( {m + 1} \right)y = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (2), ta có: \[x = 2 - \left( {m + 1} \right)y.\]
Thay \[x = 2 - \left( {m + 1} \right)y\] vào phương trình (1), ta được:
\[m\left[ {2 - \left( {m + 1} \right)y} \right] + 2my = m + 1\]
\[2m - \left( {{m^2} + m} \right)y + 2my = m + 1\]
\[\left( { - {m^2} + m} \right)y = - m + 1\]
\[ - m\left( {m - 1} \right)y = - \left( {m - 1} \right)\]
Để phương trình có nghiệm duy nhất thì \[m \ne 0\] và \[m \ne 1.\]
Khi đó ta có \[y = \frac{{ - \left( {m - 1} \right)}}{{ - m\left( {m - 1} \right)}} = \frac{1}{m}.\]
Suy ra \[x = 2 - \left( {m + 1} \right) \cdot \frac{1}{m} = \frac{{2m - m - 1}}{m} = \frac{{m - 1}}{m}.\]
Vì vậy \[A = x - y = \frac{{m - 1}}{m} - \frac{1}{m} = 1 - \frac{1}{m} - \frac{1}{m} = 1 - \frac{2}{m}.\]
Với \(m \in \mathbb{Z},\) để biểu thức \[A\] nhận giá trị nguyên thì \[\frac{2}{m}\] nhận giá trị nguyên.
Suy ra \[m \in \]Ư\[\left( 2 \right) = \left\{ { - 2; - 1;1;2} \right\}.\]
So với điều kiện \[m \ne 0\] và \[m \ne 1,\] ta nhận \[m \in \left\{ { - 2; - 1;2} \right\}.\]
Vậy có 3 giá trị của \(m\) thỏa mãn yêu cầu đề bài, ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết hệ phương trình \[\left\{ \begin{array}{l}ax - 3y = 1\\x + by = - 5\end{array} \right.\] nhận cặp số \(\left( {2;\,\, - 3} \right)\) là một nghiệm. Khi đó, giá trị của \(a,\,\,b\) là
Câu 2:
Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)
Câu 3:
Cho hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\\2x - y = - 5\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng lập phương của \(x\) và \(y\) là
Câu 4:
Hệ phương trình \[\left\{ \begin{array}{l}x + y = 3\\x + 2y = - 5\end{array} \right.\] nhận cặp số nào sau đây là nghiệm?
Câu 5:
Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Câu 6:
Cho \(\left( {x;\,\,y} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}\frac{3}{x} + \frac{2}{y} = 7\\\frac{2}{x} - \frac{5}{y} = - 27\end{array} \right.\] và cùng với các khẳng định sau:
(i) Hệ phương trình cho điều kiện xác định là \(x \ne 0\) và \(y \ne 0.\)
(ii) Hệ phương trình có nghiệm là \(\left( { - 1;\,\,5} \right)\).
(iii) Tổng bình phương của \(x\) và \(y\) lớn hơn 20.
Có bao nhiêu khẳng định đúng trong các khẳng định trên?
về câu hỏi!