Câu hỏi:

11/10/2024 151

Cho hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\\2x - y = - 5\end{array} \right.\] có nghiệm là \(\left( {x;\,\,y} \right)\). Tổng lập phương của \(x\) và \(y\) là

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cách 1. Sử dụng máy tính cầm tay, ta lần lượt bấm các phím theo thứ tự:

Trên màn hình hiện ra kết quả \(x = - 2,\) ấn thêm phím ta thấy màn hình hiện kết quả \(y = 1.\)

Như vậy, hệ phương trình đã cho có nghiệm là \(\left( { - 2;\,\,1} \right)\).

Khi đó, \[{x^3} + {y^3} = {\left( { - 2} \right)^3} + {1^3} = - 7\].

Cách 2. Xét hệ phương trình \[\left\{ \begin{array}{l}x + 3y = 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x - y = - 5\,\,\,\,\,\left( 2 \right)\end{array} \right.\]

Từ (1) suy ra \(x = 1 - 3y\). Thế \(x = 1 - 3y\) vào (2) ta được phương trình \(2\left( {1 - 3y} \right) - y = - 5\).

Giải phương trình:

\(2\left( {1 - 3y} \right) - y = - 5\)

\(2 - 6y - y = - 5\)

\( - 7y = - 7\)

\(y = 1\).

Thay \(y = 1\) vào phương trình \(x = 1 - 3y\), ta được: \(x = 1 - 3 \cdot 1 = - 2.\)

Như vậy, hệ phương trình đã cho có nghiệm là \(\left( { - 2;\,\,1} \right)\).

Khi đó, \[{x^3} + {y^3} = {\left( { - 2} \right)^3} + {1^3} = - 7\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của \[m\] để hệ phương trình \[\left\{ \begin{array}{l}mx + 2my = m + 1\\x + \left( {m + 1} \right)y = 2\end{array} \right.\] có nghiệm duy nhất \[\left( {x;y} \right)\] sao cho \[G = x - y\] nhận giá trị nguyên?

Xem đáp án » 11/10/2024 367

Câu 2:

II. Thông hiểu

Biết hệ phương trình \[\left\{ \begin{array}{l}ax - 3y = 1\\x + by = - 5\end{array} \right.\] nhận cặp số \(\left( {2;\,\, - 3} \right)\) là một nghiệm. Khi đó, giá trị của \(a,\,\,b\) là

Xem đáp án » 11/10/2024 247

Câu 3:

Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}2x + y = 3\\\left( {2m + 1} \right)x + 2y = 7\end{array} \right.\] có nghiệm duy nhất \(x = y?\)

Xem đáp án » 11/10/2024 184

Câu 4:

Hệ phương trình \[\left\{ \begin{array}{l}x + y = 3\\x + 2y = - 5\end{array} \right.\] nhận cặp số nào sau đây là nghiệm?

Xem đáp án » 11/10/2024 150

Câu 5:

Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là

Xem đáp án » 11/10/2024 103

Câu 6:

III. Vận dụng

Cho \(\left( {x;\,\,y} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}\frac{3}{x} + \frac{2}{y} = 7\\\frac{2}{x} - \frac{5}{y} = - 27\end{array} \right.\] và cùng với các khẳng định sau:

(i) Hệ phương trình cho điều kiện xác định là \(x \ne 0\) và \(y \ne 0.\)

(ii) Hệ phương trình có nghiệm là \(\left( { - 1;\,\,5} \right)\).

(iii) Tổng bình phương của \(x\) và \(y\) lớn hơn 20.

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Xem đáp án » 11/10/2024 102

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store