Câu hỏi:
11/10/2024 419Một mảnh đất hình chữ nhật có chu vi \[56{\rm{\;m}}{\rm{.}}\] Nếu tăng chiều rộng thêm \[2{\rm{\;m}}\] và giảm chiều dài đi \[{\rm{1\;m}}\] thì diện tích của mảnh đất tăng thêm \[18{\rm{\;}}{{\rm{m}}^2}.\] Khi đó diện tích mảnh đất đó bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi chiều dài, chiều rộng của mảnh đất hình chữ nhật lần lượt là \[x{\rm{\;(m)}},\,\,y{\rm{\;(m)}}\]\[\left( {x > y > 0,\,\,x > 1} \right).\]
Vì chu vi của mảnh đất là \[56{\rm{\;m}}\] nên ta có phương trình \[2\left( {x + y} \right) = 56\] hay \[x + y = 28\] (1)
Diện tích của mảnh đất ban đầu là \[xy{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Nếu tăng chiều rộng thêm \[2{\rm{\;m}}\] và giảm chiều dài đi \[1{\rm{\;m}}\] thì lúc này, chiều dài mảnh đất là \[x - 1{\rm{\;(m)}}\] và chiều rộng mảnh đất là \[y + 2{\rm{\;(m)}}{\rm{.}}\] Khi đó diện tích mảnh đất tăng thêm \[18{\rm{\;}}{{\rm{m}}^2}\] nên ta có phương trình \[\left( {x - 1} \right)\left( {y + 2} \right) = xy + 18\] hay \[xy + 2x - y - 2 = xy + 18\].
Tức là, \[2x - y = 20\] (2)
Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 28\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x - y = 20\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (2), ta có \[y = 2x - 20\] (*)
Thế (*) vào phương trình (1), ta được:
\[x + 2x - 20 = 28\] hay \[3x = 48\], tức là, \[x = 16\] (thỏa mãn điều kiện).
Thế \[x = 16\] vào (*), ta được \[y = 2 \cdot 16 - 20 = 12\] (thỏa mãn điều kiện).
Do đó chiều dài và chiều rộng của mảnh đất đó lần lượt là \[16{\rm{\;m}}\] và \[12{\rm{\;m}}\].
Như vậy, diện tích mảnh đất đó bằng \[16 \cdot 12 = 192{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bác Xuân đến siêu thị mua một máy hút ẩm và một cái quạt cây với tổng số tiền theo giá niêm yết là \[9\] triệu đồng. Tuy nhiên do siêu thị khuyến mại để tri ân khách hàng nên giá của máy hút ẩm và quạt cây đã lần lượt được giảm \[20\% \] và \[10\% \] so với giá niêm yết. Do đó bác Xuân đã được giảm \[1,6\] triệu đồng khi mua hai sản phẩm trên. Hỏi theo giá niêm yết, nếu bác Xuân mua hai máy hút ẩm và ba cái quạt cây thì bác Xuân phải trả cho siêu thị bao nhiêu tiền?
Câu 2:
Bạn Bình mua một quyển từ điển và một món đồ chơi với tổng số tiền theo giá niêm yết là \[750\] nghìn đồng. Vì Bình mua đúng dịp cửa hàng có chương trình khuyến mại nên khi thanh toán giá quyển từ điển được giảm \[20\% ,\] giá món đồ chơi được giảm \[10\% .\] Do đó Bình chỉ phải trả \[630\]nghìn đồng. Gọi \[x,y\] lần lượt là giá gốc của quyển từ điển và món đồ chơi. Khẳng định nào sau đây là đúng về hệ phương trình biểu diễn mối quan hệ giữa \(x\) và \(y\)?
Câu 3:
II. Thông hiểu
Một đoàn xe cần vận chuyển hàng hóa thiết yếu tới các vùng có lũ. Nếu xếp mỗi xe \[15\] tấn thì còn thừa lại \[5\] tấn, còn nếu xếp mỗi xe \[16\] tấn thì chở được thêm \[3\] tấn nữa. Gọi \(x\) và \(y\) lần lượt là số xe và số tấn hàng cần vận chuyển. Khi đó hệ phương trình biểu diễn mối quan hệ giữa \(x\) và \(y\) là
Câu 4:
Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm trong \[6\] ngày thì xong công việc. Hai người làm cùng nhau trong \[3\] ngày thì người thứ nhất được chuyển đi làm công việc khác, người thứ hai làm một mình trong \[4\] ngày nữa thì hoàn thành công việc. Gọi \(x\) và \(y\) lần lượt là thời gian người thứ nhất và người thứ hai làm một mình hoàn thành công việc. Khi đó hệ phương trình biểu diễn mối quan hệ giữa \(x\) và \(y\) là
Câu 5:
Một ô tô dự định đi từ \[A\] đến \[B\] trong một thời gian nhất định với một vận tốc xác định.
Dữ kiện 1. Nếu ô tô tăng vận tốc thêm \[15\] km/h thì sẽ đến \[B\] sớm hơn \[2\] giờ so với dự định.
Dữ kiện 2. Nếu ô tô giảm vận tốc đi \[5\] km/h thì sẽ đến \[B\] muộn \[1\] giờ so với dự định.
Gọi \(x\) và \[y\] lần lượt là vận tốc dự định và thời gian dự định của ô tô đi hết quãng đường \[AB\].
Khẳng định nào sau đây là đúng?
Câu 6:
III. Vận dụng
Một phòng học có \[200\] ghế được xếp thành từng dãy, số ghế ở mỗi dãy như nhau. Nếu kê thêm \[2\] dãy và mỗi dãy tăng thêm \[1\] ghế thì kê được \[242\] ghế. Kết luận nào sau đây đúng?
Câu 7:
Theo kế hoạch, hai tổ sản xuất phải làm \[700\] sản phẩm. Nhưng do tổ một vượt mức \[15\% \] so với kế hoạch và tổ hai vượt mức \[20\% \] nên cả hai tổ đã làm được \[820\] sản phẩm. Gọi \[x,y\] (sản phẩm) lần lượt là số sản phẩm tổ một, tổ hai lần lượt làm theo kế hoạch. Khẳng định nào sau đây là đúng về hệ phương trình biểu diễn mối quan hệ giữa \(x\) và \(y\)?
về câu hỏi!