Câu hỏi:

11/10/2024 2,930 Lưu

Một mảnh đất hình chữ nhật có chu vi \[56{\rm{\;m}}{\rm{.}}\] Nếu tăng chiều rộng thêm \[2{\rm{\;m}}\] và giảm chiều dài đi \[{\rm{1\;m}}\] thì diện tích của mảnh đất tăng thêm \[18{\rm{\;}}{{\rm{m}}^2}.\] Khi đó diện tích mảnh đất đó bằng

A. \[195,6{\rm{\;}}{{\rm{m}}^2}.\]

B. \[192{\rm{\;}}{{\rm{m}}^2}.\]

C. \[776,9{\rm{\;}}{{\rm{m}}^2}.\]

D. \[811{\rm{\;}}{{\rm{m}}^2}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Gọi chiều dài, chiều rộng của mảnh đất hình chữ nhật lần lượt là \[x{\rm{\;(m)}},\,\,y{\rm{\;(m)}}\]\[\left( {x > y > 0,\,\,x > 1} \right).\]

Vì chu vi của mảnh đất là \[56{\rm{\;m}}\] nên ta có phương trình \[2\left( {x + y} \right) = 56\] hay \[x + y = 28\] (1)

Diện tích của mảnh đất ban đầu là \[xy{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Nếu tăng chiều rộng thêm \[2{\rm{\;m}}\] và giảm chiều dài đi \[1{\rm{\;m}}\] thì lúc này, chiều dài mảnh đất là \[x - 1{\rm{\;(m)}}\] và chiều rộng mảnh đất là \[y + 2{\rm{\;(m)}}{\rm{.}}\] Khi đó diện tích mảnh đất tăng thêm \[18{\rm{\;}}{{\rm{m}}^2}\] nên ta có phương trình \[\left( {x - 1} \right)\left( {y + 2} \right) = xy + 18\] hay \[xy + 2x - y - 2 = xy + 18\].

Tức là, \[2x - y = 20\] (2)

Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 28\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x - y = 20\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]

Từ phương trình (2), ta có \[y = 2x - 20\] (*)

Thế (*) vào phương trình (1), ta được:

\[x + 2x - 20 = 28\] hay \[3x = 48\], tức là, \[x = 16\] (thỏa mãn điều kiện).

Thế \[x = 16\] vào (*), ta được \[y = 2 \cdot 16 - 20 = 12\] (thỏa mãn điều kiện).

Do đó chiều dài và chiều rộng của mảnh đất đó lần lượt là \[16{\rm{\;m}}\] và \[12{\rm{\;m}}\].

Như vậy, diện tích mảnh đất đó bằng \[16 \cdot 12 = 192{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi \[x\] (triệu đồng) là giá niêm yết của máy hút ẩm và \[y\] (triệu đồng) là giá niêm yết của quạt cây \[\left( {0 < x < 9,\,\,0 < y < 9} \right).\]

Tổng số tiền của máy hút ẩm và quạt cây là \[9\] triệu đồng nên ta có phương trình \[x + y = 9\] (1)

Khi máy hút ẩm được giảm \[20\% \] so với giá niêm yết và quạt cây được giảm \[10\% \] so với giá niêm yết thì số tiền được giảm giá là 1,6 triệu đồng nên ta có phương trình:

\[20\% .x + 10\% .y = 1,6\] hay \[\frac{1}{5}x + \frac{1}{{10}}y = 1,6\] (2)

Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 9\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\\frac{1}{5}x + \frac{1}{{10}}y = 1,6\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]

Từ phương trình (1), ta có \[x = 9 - y\] (*)

Thế (*) vào phương trình (2), ta được \[\frac{1}{5}\left( {9 - y} \right) + \frac{1}{{10}}y = 1,6\].

Giải phương trình:

\[\frac{1}{5}\left( {9 - y} \right) + \frac{1}{{10}}y = 1,6\]

\[\frac{9}{5} - \frac{1}{5}y + \frac{1}{{10}}y = 1,6\].

\[ - \frac{1}{{10}}y = - \frac{1}{5}\]

\[y = 2\] (thỏa mãn điều kiện).

Thế \[y = 2\] vào phương trình (*), ta được \[x = 9 - y = 9 - 2 = 7\] (thỏa mãn điều kiện).

Vì vậy giá niêm yết của máy hút ẩm là \[7\] triệu đồng và quạt cây là \[2\] triệu đồng.

Do đó số tiền theo giá niêm yết bác Xuân phải trả cho siêu thị khi mua hai máy hút ẩm và ba cái quạt cây là: \[2.7 + 3.2 = 20\] (triệu đồng).

Vậy ta chọn phương án D.

</>

Lời giải

Đáp án đúng là: B

Quãng đường \[AB\] là \[xy\] (km).

⦁ Nếu ô tô tăng vận tốc thêm \[15\] km/h thì vận tốc của ô tô là \[x + 15\] (km/h).

Khi đó ô tô đến \[B\] sớm hơn dự định là \[2\] giờ nên thời gian ô tô đi từ \[A\] đến \[B\] là \[y - 2\] (giờ).

Vì vậy ta có phương trình \[\left( {x + 15} \right)\left( {y - 2} \right) = xy\] hay \[xy - 2x + 15y - 30 = xy.\]

Tức là, \[ - 2x + 15y = 30\] (1)

⦁ Nếu ô tô giảm vận tốc đi \[5\] km/h thì vận tốc của ô tô là \[x - 5\] (km/h).

Khi đó ô đến \[B\] muộn hơn dự định là \[1\] giờ nên thời gian ô tô đi là \[y + 1\] (giờ).

Vì vậy ta có phương trình \[\left( {x - 5} \right)\left( {y + 1} \right) = xy\] hay \[xy + x - 5y - 5 = xy.\]

Tức là, \[x - 5y = 5\] (2)

Từ (1), (2), ta có hệ phương trình \[\left\{ \begin{array}{l} - 2x + 15y = 30\\x - 5y = 5.\end{array} \right.\]

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left\{ \begin{array}{l}x + y = 700\\15\% x + 20\% y = 820.\end{array} \right.\]

B. \[\left\{ \begin{array}{l}x + y = 700\\\frac{{23}}{{20}}x + \frac{6}{5}y = 820.\end{array} \right.\]

C. \[\left\{ \begin{array}{l}x + y = 700\\15x + 20y = 820.\end{array} \right.\]

D. \[\left\{ \begin{array}{l}x + y = 700\\23x + 24y = 820.\end{array} \right.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Phòng học ban đầu có \[10\] dãy ghế, mỗi dãy có \[20\] ghế.

B. Phòng học ban đầu có \[12\] dãy ghế, mỗi dãy có \[15\] ghế.

C. Phòng học ban đầu có \[10\] dãy ghế, mỗi dãy có \[25\] ghế.

D. Phòng học ban đầu có \[20\] dãy ghế, mỗi dãy có \[10\] ghế.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left\{ \begin{array}{l}15x - y = - 5\\16x - y = 3.\end{array} \right.\]

B. \[\left\{ \begin{array}{l}15x - y = 5\\16x - y = - 3.\end{array} \right.\]

C. \[\left\{ \begin{array}{l}15x - y = 5\\16x - y = 3.\end{array} \right.\]

D. \[\left\{ \begin{array}{l}15x - y = - 5\\16x - y = - 3.\end{array} \right.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left\{ \begin{array}{l}x + y = 6\\x + y = 1.\end{array} \right.\]

B. \[\left\{ \begin{array}{l}x + y = \frac{1}{6}\\x + y = 1.\end{array} \right.\]

C. \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = 6\\\frac{3}{x} + \frac{7}{y} = 1.\end{array} \right.\]

D. \[\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{6}\\\frac{3}{x} + \frac{7}{y} = 1.\end{array} \right.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP