Câu hỏi:

11/10/2024 2,870

II. Thông hiểu

Tổng các nghiệm của phương trình \(\left( {\frac{1}{3}x - 3} \right)\left( {x + 8} \right) = 0\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Giải phương trình:

\(\left( {\frac{1}{3}x - 3} \right)\left( {x + 8} \right) = 0\)

\[\frac{1}{3}x - 3 = 0\] hoặc \[x + 8 = 0\]

\(x = 9\) hoặc \(x = - 8\).

Do đó phương trình đã cho có hai nghiệm là \(x = 9\) và \(x = - 8\).

Vậy tổng các nghiệm của phương trình đó là: \(9 + \left( { - 8} \right) = 1.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Điều kiện xác định: \(x \ne 1;\,\,x \ne 2.\)

\(\frac{1}{{x - 1}} - \frac{7}{{x - 2}} = \frac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\)

\(\frac{{1 \cdot \left( {x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \frac{{7 \cdot \left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \frac{{ - 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)

\(1 \cdot \left( {x - 2} \right) - 7 \cdot \left( {x - 1} \right) = - 1\)

\(x - 2 - 7x + 7 = - 1\)

\( - 6x = - 6\)

\(x = 1\) (không thỏa mãn điều kiện).

Vậy phương trình vô nghiệm. Ta chọn phương án A.

Lời giải

Đáp án đúng là: A

Với \[x = 0,\] ta có:

\[\frac{1}{{0 + 1}} - \frac{{2 \cdot {0^2} - m}}{{{0^3} + 1}} = \frac{4}{{{0^2} - 0 + 1}}.\]

\[1 - \left( { - m} \right) = 4\]

\[1 + m = 4\]

\[m = 3.\]

Với \[m = 3,\] ta có phương trình: \[\frac{1}{{x + 1}} - \frac{{2{x^2} - 3}}{{{x^3} + 1}} = \frac{4}{{{x^2} - x + 1}}\] (1)

Điều kiện xác định: \[x \ne - 1.\]

Từ (1), ta có:

\[\frac{1}{{x + 1}} - \frac{{2{x^2} - 3}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{4}{{{x^2} - x + 1}}\]

\[\frac{{{x^2} - x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \frac{{2{x^2} - 3}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{4\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\]

\[{x^2} - x + 1 - \left( {2{x^2} - 3} \right) = 4\left( {x + 1} \right)\]

\[{x^2} - x + 1 - 2{x^2} + 3 = 4x + 4\]

\[ - {x^2} - 5x = 0\]

\[ - x\left( {x + 5} \right) = 0\]

\[x = 0\] hoặc \[x + 5 = 0\]

\[x = 0\] hoặc \[x = - 5.\]

Do đó phương trình (2) có hai nghiệm là \[x = 0\] và \[x = - 5.\]

Ta thấy, hai nghiệm \[x = 0\] và \[x = - 5\] đều thỏa mãn điều kiện của phương trình (1).

Vậy nghiệm còn lại của phương trình đã cho là \[x = - 5.\]

Do đó ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Nghiệm của bất phương trình \[\frac{{3x + 52}}{{10}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + 1\] là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

I. Nhận biết

Điều kiện xác định của phương trình \(\frac{1}{{{x^2} + 4}} = \frac{1}{{x - 2}}\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay