Câu hỏi:

12/10/2024 630

Giá trị của \[a\] và \(b\) sao cho hệ phương trình \[\left\{ \begin{array}{l}x + ay = 3\\ax - 3by = 4\end{array} \right.\] có nghiệm là \[\left( { - 1;2} \right)\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Thay \[x = - 1,y = 2\] vào hệ phương trình đã cho, ta được:

\[\left\{ \begin{array}{l} - 1 + a \cdot 2 = 3\\a \cdot \left( { - 1} \right) - 3b \cdot 2 = 4\end{array} \right.\] hay \[\left\{ \begin{array}{l} - 1 + 2a = 3\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - a - 6b = 4\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]

Giải phương trình (1), ta có: \[2a = 4\] hay \[a = 2.\]

Thay \[a = 2\] vào phương trình (2), ta được:

\[ - 2 - 6b = 4\] hay \[6b = - 6,\] tức là \[b = - 1.\]

Vậy \[a = 2,b = - 1.\]

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Thay \[x = y\] vào hệ phương trình đã cho, ta được: \[\left\{ \begin{array}{l}3y + y = 4\\\left( {2m + 1} \right)y + 7y = 8\end{array} \right.\] hay \[\left\{ \begin{array}{l}4y = 4\\\left( {2m + 8} \right)y = 8\,\,\,\,\,\,\,\,\left( 1 \right)\end{array} \right.\]

Với \[4y = 4,\] ta có: \[y = 1.\]

Thay \[y = 1\] vào phương trình (1), ta được:

\[\left( {2m + 8} \right) \cdot 1 = 8\]

\[2m + 8 = 8\]

\[2m = 0\]

\[m = 0.\]

Vậy \[m = 0\] thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án B.

Câu 2

Lời giải

Đáp án đúng là: A

Cách 1. ⦁ Thay \(x = 3\) và \(y = 2\) vào hệ phương trình đã cho, ta được: \[\left\{ \begin{array}{l}3 + 2 = 5\\3 - 2 = 1\end{array} \right.\].

Do đó cặp số \[\left( {3;2} \right)\] là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\].

⦁ Tương tự, ta thay lần lượt các cặp số ở phương án B, C, D vào hệ phương trình đã cho thì thấy rằng các cặp số này không phải nghiệm của hệ phương trình đó.

Vậy ta chọn phương án A.

Cách 2. Sử dụng máy tính cầm tay, lần lượt bấm các phím

 MODE   5    1      1    =    1    =  5  =    1    =      1    =    1    =  =

Trên màn hình hiện lên kết quả \(x = 3\), ta ấn tiếp phím = thì màn hình hiện lên kết quả \(y = 2\).

Như vậy cặp số \[\left( {3;2} \right)\] là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\].

Vậy ta chọn phương án A.

Cách 3. Giải hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\].

Cộng từng vế phương trình thứ nhất với phương trình thứ hai của hệ đã cho, ta được:

\[2x = 6,\] tức là \[x = 3.\]

Thay \[x = 3\] vào phương trình \(x + y = 5\), ta được: \[3 + y = 5,\] tức là \[y = 2.\]

Vậy hệ phương trình đã cho có nghiệm duy nhất là \[\left( {3;2} \right).\]

Do đó ta chọn phương án A.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP