Câu hỏi:
12/10/2024 202Hệ phương trình \[\left\{ \begin{array}{l}\frac{2}{x} + \frac{1}{y} = 3\\\frac{6}{x} - \frac{7}{y} = - 1\end{array} \right.\] có nghiệm là
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Điều kiện xác định: \[x \ne 0\] và \[y \ne 0.\]
Đặt \[X = \frac{1}{x},\,\,Y = \frac{1}{y}.\]
Khi đó hệ phương trình ban đầu trở thành: \[\left\{ \begin{array}{l}2X + Y = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\6X - 7Y = - 1\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Để tìm được nghiệm của hệ phương trình trên, ta có hai cách như sau:
⦁ Cách 1. Sử dụng máy tính cầm tay, lần lượt bấm các phím
Trên màn hình hiện lên kết quả \(X = 1,\) ta ấn tiếp phím = thì màn hình hiện lên kết quả \(Y = 1.\)
⦁ Cách 2. Giải hệ phương trình:
Nhân hai vế của phương trình (1) với \[3\], ta được hệ phương trình: \[\left\{ \begin{array}{l}6X + 3Y = 9\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\\6X - 7Y = - 1\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Trừ từng vế phương trình (3) cho phương trình (2), ta được: \[10Y = 10\] hay \[Y = 1.\]
Thay \[Y = 1\] vào phương trình (1), ta được: \[2X + 1 = 3\], suy ra \[X = 1.\]
Với \[X = 1\], ta có \[\frac{1}{x} = 1\] suy ra \[x = 1\] (thỏa mãn điều kiện \[x \ne 0\]).
Với \[Y = 1\], ta có \[\frac{1}{y} = 1\] suy ra \[y = 1\] (thỏa mãn điều kiện \[y \ne 0\]).
Vậy hệ phương trình ban đầu có nghiệm là \[\left( {x;y} \right) = \left( {1;1} \right).\]
Do đó ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
III. Vận dụng
Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}3x + y = 4\\\left( {2m + 1} \right)x + 7y = 8\end{array} \right.\] có nghiệm duy nhất \[x = y?\]
Câu 2:
Giá trị của \[a\] và \(b\) sao cho hệ phương trình \[\left\{ \begin{array}{l}x + ay = 3\\ax - 3by = 4\end{array} \right.\] có nghiệm là \[\left( { - 1;2} \right)\] là
Câu 3:
I. Nhận biết
Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\]?
Câu 4:
Có bao nhiêu giá trị nguyên của \[m\] để hệ phương trình \[\left\{ \begin{array}{l}mx + 2my = m + 1\\x + \left( {m + 1} \right)y = 2\end{array} \right.\] có nghiệm duy nhất \[\left( {x;y} \right)\] sao cho \[G = x - y\] nhận giá trị nguyên?
Câu 5:
Cho hệ phương trình \[\left\{ \begin{array}{l} - 2x + 2y = - 1\\3x + y = 7\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được hệ thức biểu diễn \(y\) theo \(x\) là
Câu 6:
II. Thông hiểu
Cho hệ phương trình \[\left\{ \begin{array}{l}2x - y = 1\\3x + 2y = 5\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được phương trình ẩn \(x\) là
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận