Cho \[\beta \] là góc nhọn bất kì. Khẳng định nào sau đây đúng?
A. \[\sin \beta = \frac{1}{{\tan \beta }}.\]
B. \[\cos \beta = \frac{1}{{\tan \beta }}.\]
C. \[\cot \beta = \frac{1}{{\tan \beta }}.\]
D. \[\cot \beta = \frac{1}{{\sin \beta }}.\]
Quảng cáo
Trả lời:

Đáp án đúng là: C
Theo định nghĩa tỉ số lượng giác trong tam giác vuông, ta có \[\cot \beta = \frac{1}{{\tan \beta }}.\]
Vậy ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[75\] tầng.
B. \[80\] tầng.
C. \[70\] tầng.
D. \[60\] tầng.
Lời giải
Đáp án đúng là: C

Giả sử bóng trên mặt đất của cột đèn và tia nắng mặt trời tạo nên một góc nghiêng \[\alpha .\]
Suy ra cùng lúc đó, bóng trên mặt đất của tòa nhà và tia nắng mặt trời cũng tạo nên một góc nghiêng \[\alpha .\]
Vì tam giác \[ABC\] vuông tại \[B\] nên \[\tan \alpha = \frac{{AB}}{{BC}} = \frac{7}{4}\] (1)
Vì tam giác \[DEF\] vuông tại \[E\] nên \[\tan \alpha = \frac{{DE}}{{EF}} = \frac{{DE}}{{80}}\] (2)
Từ (1), (2), ta thu được \[\frac{{DE}}{{80}} = \frac{7}{4}.\]
Do đó \[DE = \frac{7}{4} \cdot 80 = 140\] (m).
Như vậy, chiều cao của tòa nhà là \[140\] m.
Vậy tòa nhà đó cao \[140:2 = 70\] (tầng).
Do đó ta chọn phương án C.
Câu 2
A. \[J = 1.\]
B. \[J = 2.\]
C. \[J = 0.\]
D. \[J = 3.\]
Lời giải
Đáp án đúng là: C
⦁ Cách 1: Ta có: \[J = \tan 76^\circ - \cot 14^\circ = \tan 76^\circ - \cot \left( {90^\circ - 76^\circ } \right) = \tan 76^\circ - \tan 76^\circ = 0.\]
⦁ Cách 2: Sử dụng máy tính cầm tay:
Ta có: \[\cot 14^\circ = \frac{1}{{\tan 14^\circ }}.\]
Đầu tiên, ta đưa máy tính về chế độ “độ”, sau đó ấn liên tiếp các phím
Màn hình hiện lên kết quả: \[0.\] Nghĩa là, \[J = 0.\]
Vậy ta chọn phương án C.
Câu 3
A. \[I = 4.\]
B. \[I = 3.\]
C. \[I = 2.\]
D. \[I = 1.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\sin \alpha = \cot \beta.\]
B. \[\sin \alpha = \tan \beta.\]
C. \[\sin \alpha = \cos \beta.\]
D. \[{\rm{cos}}\alpha = \cot \beta.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[0 < \sin \alpha < 1\,;\,\,0 < \cos \alpha < 1.\]
B. \[ - 1 < \sin \alpha < 1\,;\,\, - 1 < \cos \alpha < 1.\]
C. \[ - 1 < \sin \alpha < 0\,;\,\, - 1 < \cos \alpha < 0.\]
D. \[ - 1 \le \sin \alpha < 0\,;\,\, - 1 \le \cos \alpha < 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc \[\alpha ,\] kí hiệu \[\tan \alpha .\]
B. Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc \[\alpha ,\] kí hiệu \[\sin \alpha .\]
C. Tỉ số giữa cạnh huyền và cạnh kề được gọi là côsin của góc \[\alpha ,\] kí hiệu \[\cot \alpha .\]
D. Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc \[\alpha ,\] kí hiệu \[\cos \alpha .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
D. \[\frac{{AB}}{{AC}} = \frac{{\cos C}}{{\cos B}}.\]
D. \[\frac{{AB}}{{AC}} = \frac{{\cos C}}{{\cos B}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.