Câu hỏi:

13/10/2024 915 Lưu

Giá trị của biểu thức \[I = \frac{{\sin 32^\circ }}{{\cos 58^\circ }}\] bằng

A. \[I = 4.\]

B. \[I = 3.\]

C. \[I = 2.\]

D. \[I = 1.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cách 1: Ta có: \[I = \frac{{\sin 32^\circ }}{{\cos 58^\circ }} = \frac{{\sin \left( {90^\circ - 58^\circ } \right)}}{{\cos 58^\circ }} = \frac{{\cos 58^\circ }}{{\cos 58^\circ }} = 1.\]

Cách 2: Sử dụng máy tính cầm tay:

Đầu tiên, ta đưa máy tính về chế độ “độ”, sau đó ấn liên tiếp các phím

sin  3  2  °'"    )  ÷  cos  5  8  °'"    )  =

Màn hình hiện lên kết quả: \[1.\] Nghĩa là, \[I = 1.\]

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Một cột đèn cao  7  m có bóng trên mặt đất dài  4  m, gần đó có một tòa nhà cao tầng có bóng trên mặt đất dài  80  m (hình vẽ).  Em hãy cho biết tòa nhà đó cao bao nhiêu tầng, biết rằng mỗi tầng cao  2  m? (ảnh 2)

Giả sử bóng trên mặt đất của cột đèn và tia nắng mặt trời tạo nên một góc nghiêng \[\alpha .\]

Suy ra cùng lúc đó, bóng trên mặt đất của tòa nhà và tia nắng mặt trời cũng tạo nên một góc nghiêng \[\alpha .\]

Vì tam giác \[ABC\] vuông tại \[B\] nên \[\tan \alpha = \frac{{AB}}{{BC}} = \frac{7}{4}\] (1)

Vì tam giác \[DEF\] vuông tại \[E\] nên \[\tan \alpha = \frac{{DE}}{{EF}} = \frac{{DE}}{{80}}\] (2)

Từ (1), (2), ta thu được \[\frac{{DE}}{{80}} = \frac{7}{4}.\]

Do đó \[DE = \frac{7}{4} \cdot 80 = 140\] (m).

Như vậy, chiều cao của tòa nhà là \[140\] m.

Vậy tòa nhà đó cao \[140:2 = 70\] (tầng).

Do đó ta chọn phương án C.

Câu 2

A. \[J = 1.\]

B. \[J = 2.\]

C. \[J = 0.\]

D. \[J = 3.\]

Lời giải

Đáp án đúng là: C

Cách 1: Ta có: \[J = \tan 76^\circ - \cot 14^\circ = \tan 76^\circ - \cot \left( {90^\circ - 76^\circ } \right) = \tan 76^\circ - \tan 76^\circ = 0.\]

Cách 2: Sử dụng máy tính cầm tay:

Ta có: \[\cot 14^\circ = \frac{1}{{\tan 14^\circ }}.\]

Đầu tiên, ta đưa máy tính về chế độ “độ”, sau đó ấn liên tiếp các phím

tan  7  6  °'"    )    1  ÷  tan  1  4  °'"    )  =

Màn hình hiện lên kết quả: \[0.\] Nghĩa là, \[J = 0.\]

Vậy ta chọn phương án C.

Câu 3

A. \[\sin \alpha = \cot \beta.\]

B. \[\sin \alpha = \tan \beta.\]

C. \[\sin \alpha = \cos \beta.\]

D. \[{\rm{cos}}\alpha = \cot \beta.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[0 < \sin \alpha < 1\,;\,\,0 < \cos \alpha < 1.\]

B. \[ - 1 < \sin \alpha < 1\,;\,\, - 1 < \cos \alpha < 1.\]

C. \[ - 1 < \sin \alpha < 0\,;\,\, - 1 < \cos \alpha < 0.\]

D. \[ - 1 \le \sin \alpha < 0\,;\,\, - 1 \le \cos \alpha < 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc \[\alpha ,\] kí hiệu \[\tan \alpha .\]

B. Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc \[\alpha ,\] kí hiệu \[\sin \alpha .\]

C. Tỉ số giữa cạnh huyền và cạnh kề được gọi là côsin của góc \[\alpha ,\] kí hiệu \[\cot \alpha .\]

D. Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc \[\alpha ,\] kí hiệu \[\cos \alpha .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

D. \[\frac{{AB}}{{AC}} = \frac{{\cos C}}{{\cos B}}.\]

B. \[\tan B = \cos C.\]        
C. \[\sin C = \cos B.\]

D. \[\frac{{AB}}{{AC}} = \frac{{\cos C}}{{\cos B}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP