Câu hỏi:

13/10/2024 5,081 Lưu

Để thực hiện việc di chuyển của khách hàng giữa các tầng hàng trong siêu thị, người chủ đầu tư thường cho lắp hệ thống thang cuốn tự động. Biết rằng thang cuốn có góc nghiêng là \[35^\circ \] so với phương ngang và tốc độ truyền là \[0,65\] m/s, khoảng cách giữa hai tầng liên tiếp là \[4,2\] m.

Để thực hiện việc di chuyển của khách hàng giữa các tầng hàng trong siêu thị, người chủ đầu tư thường cho lắp hệ thống thang cuốn tự động. Biết rằng thang cuốn có góc nghiêng là  35 ∘  so với phương ngang và tốc độ truyền là  0 , 65  m/s, khoảng cách giữa hai tầng liên tiếp là  4 , 2  m. (ảnh 1)

Hỏi một người khi bước vào thang cuốn và đứng yên thì cần khoảng bao nhiêu giây để có thể di chuyển từ tầng 1 lên tầng 2?

A. \[11,2\] giây.

B. \[11,3\] giây.

C. \[11,4\] giây.

D. \[11,5\] giây.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Theo đề, ta có: \[\widehat {ABH} = 35^\circ \] và \[AH = 4,2\] (m).

Vì tam giác \[ABH\] vuông tại \[H\] nên ta có \(AH = AB \cdot \sin \widehat {ABH}\).

Suy ra \[AB = \frac{{AH}}{{\sin \widehat {ABH}}} = \frac{{4,2}}{{\sin 35^\circ }}\] (m).

Thời gian để một người di chuyển từ tầng 1 lên tầng 2 là:

\[\frac{{4,2}}{{\sin 35^\circ }}:0,65 \approx 11,3\] (giây).

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Một cầu thủ sút bóng bị va vào mép xà ngang của cầu môn và bị bật ngược trở lại. Biết cầu môn cao  2 , 4  m và khoảng cách từ vị trí sút bóng đến chân cầu môn là  25  m.  Góc  α  tạo bởi đường đi của quả bóng và mặt đất gần nhất với (ảnh 2)

Vì cầu môn cao \[2,4\] m nên \[BC = 2,4\] m.

Vì khoảng cách từ vị trí sút bóng đến chân cầu môn là \[25\] m nên \[AB = 25\] m.

Do góc \[\alpha \] tạo bởi đường đi của quả bóng và mặt đất nên ta có \[\alpha = \widehat {BAC}.\]

Vì tam giác \[ABC\] vuông tại \[B\] nên \[\tan \alpha = \tan \widehat {BAC} = \frac{{BC}}{{AB}} = \frac{{2,4}}{{25}} = 0,096.\]

Suy ra \[\alpha \approx 5^\circ 29'.\]

Do đó góc tạo bởi đường đi của quả bóng và mặt đất là \[\alpha \approx 5^\circ 29'.\]

Vậy ta chọn phương án C.

Lời giải

Đáp án đúng là: B

Để xác định khoảng cách từ một gốc cây  A  trên một hòn đảo nhỏ giữa biển đến vị trí con sao biển  C  trên bãi cát (hình vẽ), người ta chọn một điểm  B  trên bãi biển cách điểm  C  một khoảng  1 225  m và dùng giác kế ngắm xác định được  ˆ A B C = 75 ∘ ; ˆ A C B = 65 ∘ . (ảnh 2)

Kẻ \[BH \bot AC\] tại \[H.\]

Tam giác \[ABC,\] có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \] (định lí tổng ba góc của một tam giác)

Suy ra \[\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ - \left( {75^\circ + 65^\circ } \right) = 40^\circ .\]

Vì tam giác \[BCH\] vuông tại \[H\] nên:

⦁ \[BH = BC.\sin \widehat {BCH} = 1{\rm{\;\;}}225.\sin 65^\circ \] (m);

⦁ \[CH = BC.\cos \widehat {BCH} = 1{\rm{\;\;}}225.\cos 65^\circ \] (m).

Vì tam giác \[ABH\] vuông tại \[H\] nên \(BH = AH \cdot \tan \widehat {BAH}\)

Suy ra \[AH = \frac{{BH}}{{\tan \widehat {BAH}}} = \frac{{1{\rm{\;\;}}225 \cdot \sin 65^\circ }}{{\tan 40^\circ }}\] (m).

Khi đó \[AC = AH + CH = \frac{{1{\rm{\;\;}}225 \cdot \sin 65^\circ }}{{\tan 40^\circ }} + 1{\rm{\;\;}}225 \cdot \cos 65^\circ \approx 1{\rm{\;\;}}841\] (m).

Do đó khoảng cách \[AC\] khoảng \[1{\rm{\;\;}}841\] m.

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP