Câu hỏi:
13/10/2024 1,845Để xác định khoảng cách từ một gốc cây \[A\] trên một hòn đảo nhỏ giữa biển đến vị trí con sao biển \[C\] trên bãi cát (hình vẽ), người ta chọn một điểm \[B\] trên bãi biển cách điểm \[C\] một khoảng \[1{\rm{\;\;}}225\] m và dùng giác kế ngắm xác định được \[\widehat {ABC} = 75^\circ ;\,\,\widehat {ACB} = 65^\circ .\]

Khi đó khoảng cách \[AC\] khoảng bao nhiêu mét?
Quảng cáo
Trả lời:
Đáp án đúng là: B

Kẻ \[BH \bot AC\] tại \[H.\]
Tam giác \[ABC,\] có: \[\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \] (định lí tổng ba góc của một tam giác)
Suy ra \[\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ - \left( {75^\circ + 65^\circ } \right) = 40^\circ .\]
Vì tam giác \[BCH\] vuông tại \[H\] nên:
⦁ \[BH = BC.\sin \widehat {BCH} = 1{\rm{\;\;}}225.\sin 65^\circ \] (m);
⦁ \[CH = BC.\cos \widehat {BCH} = 1{\rm{\;\;}}225.\cos 65^\circ \] (m).
Vì tam giác \[ABH\] vuông tại \[H\] nên \(BH = AH \cdot \tan \widehat {BAH}\)
Suy ra \[AH = \frac{{BH}}{{\tan \widehat {BAH}}} = \frac{{1{\rm{\;\;}}225 \cdot \sin 65^\circ }}{{\tan 40^\circ }}\] (m).
Khi đó \[AC = AH + CH = \frac{{1{\rm{\;\;}}225 \cdot \sin 65^\circ }}{{\tan 40^\circ }} + 1{\rm{\;\;}}225 \cdot \cos 65^\circ \approx 1{\rm{\;\;}}841\] (m).
Do đó khoảng cách \[AC\] khoảng \[1{\rm{\;\;}}841\] m.
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Theo đề, ta có: \[\widehat {ABH} = 35^\circ \] và \[AH = 4,2\] (m).
Vì tam giác \[ABH\] vuông tại \[H\] nên ta có \(AH = AB \cdot \sin \widehat {ABH}\).
Suy ra \[AB = \frac{{AH}}{{\sin \widehat {ABH}}} = \frac{{4,2}}{{\sin 35^\circ }}\] (m).
Thời gian để một người di chuyển từ tầng 1 lên tầng 2 là:
\[\frac{{4,2}}{{\sin 35^\circ }}:0,65 \approx 11,3\] (giây).
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: C

Vì cầu môn cao \[2,4\] m nên \[BC = 2,4\] m.
Vì khoảng cách từ vị trí sút bóng đến chân cầu môn là \[25\] m nên \[AB = 25\] m.
Do góc \[\alpha \] tạo bởi đường đi của quả bóng và mặt đất nên ta có \[\alpha = \widehat {BAC}.\]
Vì tam giác \[ABC\] vuông tại \[B\] nên \[\tan \alpha = \tan \widehat {BAC} = \frac{{BC}}{{AB}} = \frac{{2,4}}{{25}} = 0,096.\]
Suy ra \[\alpha \approx 5^\circ 29'.\]
Do đó góc tạo bởi đường đi của quả bóng và mặt đất là \[\alpha \approx 5^\circ 29'.\]
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.