Câu hỏi:

13/10/2024 3,020 Lưu

Tam giác \[ABC\] vuông tại \[A\] ở hình bên mô tả cột cờ \[AB\] và bóng nắng của cột cờ trên mặt đất \[AC.\]

Tam giác  A B C  vuông tại  A  ở hình bên mô tả cột cờ  A B  và bóng nắng của cột cờ trên mặt đất  A C .  Người ta đo được độ dài  A C = 12 m  và  ˆ C = 40 ∘ .  Chiều cao  A B  của cột cờ khi làm tròn đến hàng phần trăm là (ảnh 1)

Người ta đo được độ dài \[AC = 12{\rm{\;m}}\] và \[\widehat C = 40^\circ .\] Chiều cao \[AB\] của cột cờ khi làm tròn đến hàng phần trăm là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Vì tam giác \[ABC\] vuông tại \[A\] nên \[AB = AC.\tan C = 12.\tan 40^\circ \approx 10,07\] (m).

Do đó chiều cao \[AB\] của cột cờ khoảng \[10,07\] m.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Vì tam giác \[ABC\] vuông tại \[A\] nên:

⦁ \[b = a\sin B = a\cos C = c\tan B = c\cot C\,;\]

⦁ \[c = a\sin C = a\cos B = c\tan B = c\cot C.\]

Vậy ta chọn phương án C.

Câu 2

Lời giải

Đáp án đúng là: B

Cho tam giác  A B C  vuông tại  A  có  A B = 5 c m , cos B = 5 / 8 .  Kết quả nào sau đây là đúng? (ảnh 1)

Xét tam giác \[ABC\] vuông tại \[A\], có:

⦁ \[\cos B = \frac{{AB}}{{BC}}.\] Suy ra \[BC = \frac{{AB}}{{\cos B}} = \frac{5}{{\frac{5}{8}}} = 8\] (cm);

⦁ \[B{C^2} = A{B^2} + A{C^2}\] (theo định lí Pythagore)

Suy ra \[A{C^2} = B{C^2} - A{B^2} = {8^2} - {5^2} = 39.\] Do đó \[AC = \sqrt {39} \] (cm).

Vậy ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP