Câu hỏi:
13/10/2024 748Chị Minh muốn làm một cái cổng hình parabol như hình vẽ dưới đây. Chiều cao \[GH = 4\] m, chiều rộng \[AB = 4\] m, \[AC = BD = 0,9\] m. Chi Minh làm hai cánh cổng khi đóng lại là hình chữ nhật \[CDEF\] tô đậm có giá là \[1200000\] đồng/m2, còn các phần để trắng để trang trí hoa có giá là \[900000\] đồng/m2. Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gắn hệ trục tọa độ sao cho \[AB\] trùng \[Ox\], \[A\] trùng \[O\] khi đó parabol có đỉnh \[G\left( {2;4} \right)\] và đi qua gốc tọa độ.
Giả sử phương trình của parabol có dạng \[y = a{x^2} + bx + c{\rm{ }}\left( {a \ne 0} \right).\]
Vì parabol có đỉnh là \[G\left( {2;4} \right)\] và đi qua điểm O(0; 0) nên ta có:
\[\left\{ \begin{array}{l}c = 0\\ - \frac{b}{{2a}} = 2\\4a + 2b + c = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 4\\c = 0.\end{array} \right.\]
Suy ra phương trình parabol là \[y = f\left( x \right) = - {x^2} + 4x.\]
Diện tích của cả cổng là \[S = \int\limits_0^4 {\left( { - {x^2} + 4x} \right)dx = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|} _0^4 = \frac{{32}}{3}\] (m3).
Mặt khác, ta có chiều cao \[CF = DE = f\left( {0,9} \right) = 2,79\] (m);
\[CD = 4 - 2.0,9 = 2,2\] (m).
Diện tích hai cánh cổng là \[{S_{CDEF}} = CD.CF = 2,79.2,2 = 6,138\] (m2).
Diện tích phần trang trí hoa là: \[{S_{tt}} = S - {S_{CDEF}} = \frac{{32}}{3} - 6,138 = \frac{{6793}}{{1500}}\] (m2).
Vậy tổng số tiền để làm cổng là: \[6,138.1200000 + \frac{{6793}}{{1500}}.900000 = 11441400\] (đồng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi \[S\] là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right)\], trục hoành và hai đường thẳng \[x = - 3,x = 2\]. Đặt \[a = \int\limits_{ - 3}^1 {f\left( x \right)dx} ,{\rm{ }}b = \int\limits_1^2 {f\left( x \right)dx.} \]
Mệnh đề nào dưới đây là đúng?
Câu 2:
Diện tích \[S\] của hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục \[Ox\] và hai đường thẳng \[x = a,x = b{\rm{ }}\left( {a < b} \right)\] được tính theo công thức
</>
Câu 3:
Một li rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bổ dọc cốc thành 2 phần bằng nhau) là một đường parabol.
Thể tích tối đa mà cốc có thể chứa được là (làm tròn kết quả đến hai chữ số thập phân).
Câu 4:
Gọi \[S\] là diện tích hình phẳng giới hạn bởi các đường \[y = {3^x}\], \[y = 0,x = 0,x = 2.\]Mệnh đề nào dưới đây là đúng?
Câu 5:
Tính diện tích hình phẳng giới hạn bởi các đường \[y = {x^2}\], \[y = - \frac{1}{3}x + \frac{4}{3}\] và trục hoành như hình vẽ sau:
Câu 6:
III. Vận dụng
Một người chạy trong thời gian 1 giờ, vận tốc \[v\] (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh \[I\left( {\frac{1}{2};8} \right)\] và trục đối xứng song song với trục tung như hình bên. Tính quãng đường \[s\] người đó chạy được trong khoảng thời gian 45 phút, kể từ khi chạy?
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!