Câu hỏi:
13/10/2024 21,688Chị Minh muốn làm một cái cổng hình parabol như hình vẽ dưới đây. Chiều cao \[GH = 4\] m, chiều rộng \[AB = 4\] m, \[AC = BD = 0,9\] m. Chi Minh làm hai cánh cổng khi đóng lại là hình chữ nhật \[CDEF\] tô đậm có giá là \[1200000\] đồng/m2, còn các phần để trắng để trang trí hoa có giá là \[900000\] đồng/m2. Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gắn hệ trục tọa độ sao cho \[AB\] trùng \[Ox\], \[A\] trùng \[O\] khi đó parabol có đỉnh \[G\left( {2;4} \right)\] và đi qua gốc tọa độ.
Giả sử phương trình của parabol có dạng \[y = a{x^2} + bx + c{\rm{ }}\left( {a \ne 0} \right).\]
Vì parabol có đỉnh là \[G\left( {2;4} \right)\] và đi qua điểm O(0; 0) nên ta có:
\[\left\{ \begin{array}{l}c = 0\\ - \frac{b}{{2a}} = 2\\4a + 2b + c = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 4\\c = 0.\end{array} \right.\]
Suy ra phương trình parabol là \[y = f\left( x \right) = - {x^2} + 4x.\]
Diện tích của cả cổng là \[S = \int\limits_0^4 {\left( { - {x^2} + 4x} \right)dx = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|} _0^4 = \frac{{32}}{3}\] (m3).
Mặt khác, ta có chiều cao \[CF = DE = f\left( {0,9} \right) = 2,79\] (m);
\[CD = 4 - 2.0,9 = 2,2\] (m).
Diện tích hai cánh cổng là \[{S_{CDEF}} = CD.CF = 2,79.2,2 = 6,138\] (m2).
Diện tích phần trang trí hoa là: \[{S_{tt}} = S - {S_{CDEF}} = \frac{{32}}{3} - 6,138 = \frac{{6793}}{{1500}}\] (m2).
Vậy tổng số tiền để làm cổng là: \[6,138.1200000 + \frac{{6793}}{{1500}}.900000 = 11441400\] (đồng).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gắn phần miệng li đựng nước vào hệ trục tọa độ, với đỉnh trùng với gốc tọa độ.
Lúc này, ta được parabol đi qua các điểm (0; 0), (−4; 10); (4; 10).
Gọi phương trình parabol là: \[y = a{x^2} + bx + c\] \[\left( {a \ne 0} \right)\].
Ta có: \[\left\{ \begin{array}{l}c = 0\\16a - 4b + c = 10\\16a + 4b + c = 10\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c = 0\\a = \frac{5}{8}\\b = 0\end{array} \right.\].
Vậy \[y = \frac{5}{8}{x^2} \Leftrightarrow {x^2} = \frac{8}{5}y \Leftrightarrow x = \sqrt {\frac{8}{5}y} \]
Thể tích tối đa mà cốc có thể chứa nước là
\[V = \pi {\int\limits_0^{10} {\left( {\sqrt {\frac{8}{5}} y} \right)} ^2}dy = \pi \int\limits_0^{10} {\left( {\frac{8}{5}y} \right)dy = \left. {\pi \frac{4}{5}{y^2}} \right|_0^{10}} = 80\pi \approx 251,33\] cm3.
Lời giải
Đáp án đúng là: D
Ta có: \[S = \int\limits_{ - 3}^2 {\left| {f\left( x \right)} \right|dx = } \int\limits_{ - 3}^1 {\left| {f\left( x \right)} \right|dx} + \int\limits_1^2 {\left| {f\left( x \right)} \right|dx} \]
\[ = - \int\limits_{ - 3}^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \]\[ = b - a.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.