Câu hỏi:
13/10/2024 29Trong không gian với hệ tọa độ \[Oxyz\], cho các điểm \[A\left( {0;1;2} \right),B\left( {2; - 2;0} \right),\] \[C\left( { - 2;0;1} \right)\]. Mặt phẳng \[\left( P \right)\] đi qua \[A\], trực tâm \[H\] của tam giác \[ABC\] và vuông góc với mặt phẳng \[\left( {ABC} \right)\] có phương trình là
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \[\overrightarrow {AB} = \left( {2; - 3; - 2} \right)\], \[\overrightarrow {AC} = \left( { - 2; - 1; - 1} \right)\] nên
\[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 3}&{ - 2}\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&2\\{ - 1}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 2}&{ - 1}\end{array}} \right|} \right) = \left( {1;6; - 8} \right)\].
Phương trình mặt phẳng \[\left( {ABC} \right)\] là \[x + 6y - 8z + 10 = 0.\]
Phương trình mặt phẳng \[B\] và vuông góc với \[AC\] là: \[2x + y + z - 2 = 0.\]
Phương trình mặt phẳng \[C\] và vuông góc với \[AB\] là: \[2x - 3y - 2z + 6 = 0.\]
Giao điểm của ba mặt phẳng trên là trực tâm \[H\] của tam giác \[ABC\] nên ta có tọa độ điểm \[H\] là \[\left( { - \frac{{22}}{{101}}; - \frac{{31}}{{101}}; - \frac{{26}}{{101}}} \right) = - \frac{1}{{101}}\left( {22;31;26} \right).\]
Suy ra \[\overrightarrow {AH} = \left( { - \frac{{22}}{{101}}; - \frac{{31}}{{101}}; - \frac{{26}}{{101}}} \right)\]
Mặt phẳng \[\left( P \right)\] đi qua \[A\], \[H\] nên \[\overrightarrow {{n_P}} \bot \overrightarrow {AH} \].
Mặt phẳng \[\left( P \right) \bot \left( {ABC} \right)\] nên \[\overrightarrow {{n_P}} \bot {\overrightarrow n _{\left( {ABC} \right)}} = \left( {1;6; - 8} \right).\]
Vậy \[{\overrightarrow n _P} = \left[ {{{\overrightarrow n }_{\left( {ABC} \right)}},\overrightarrow {AH} } \right] = \left( {404; - 202; - 101} \right) = 101\left( {4; - 2;1} \right).\]
Do đó, \[{\overrightarrow n _P} = \left( {4; - 2;1} \right)\] cũng là một vectơ pháp tuyến của \[\left( P \right)\].
Phương trình mặt phẳng \[\left( P \right)\] là \[4x - 2y - z + 4 = 0.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
I. Nhận biết
Cho hình lập phương \[ABCD.A'B'C'D'\]. Vectơ nào là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\]?
Câu 2:
Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 3z - 1 = 0\] và \[\left( Q \right):x + 2y + 3z + 6 = 0\] là
Câu 3:
II. Thông hiểu
Trong không gian \[Oxyz\], phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {2;1;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;3; - 1} \right)\] là
Câu 4:
III. Vận dụng
Trong không gian với hệ tọa độ \[Oxyz\], cho hai mặt phẳng \[\left( P \right):2x + my + 3z - 5 = 0\] và \[\left( Q \right):nx - 8y - 6z + 2 = 0\] với \[m,n \in \mathbb{R}\]. Xác định \[m,n\] để \[\left( P \right)\] song song với \[\left( Q \right)\].
Câu 5:
Trong không gian \[Oxyz\], cho \[A\left( {0;1;1} \right)\], \[B\left( {1;2;3} \right)\]. Viết phương trình mặt phẳng \[\left( P \right)\] đi qua \[A\] và vuông góc với đường thẳng \[AB\].
Câu 6:
Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?
về câu hỏi!