Câu hỏi:
13/10/2024 389Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \[A\left( {3;1;7} \right);B\left( {5;5;1} \right)\] và mặt phẳng \[\left( P \right):2x - y - z + 4 = 0\]. Điểm \[M\] thuộc \[\left( P \right)\] sao cho \[MA = MB = \sqrt {35} \]. Biết \[M\] có hoành độ nguyên, tính \[OM\].
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi \[M\left( {a;b;c} \right)\] với \[a \in \mathbb{Z},b \in \mathbb{R},c \in \mathbb{R}.\]
Ta có: \[\overrightarrow {AM} = \left( {a - 3;b - 1;c - 7} \right)\] và \[\overrightarrow {BM} = \left( {a - 5;b - 5;c - 1} \right)\].
Vì \[\left\{ \begin{array}{l}M \in \left( P \right)\\MA = MB = \sqrt {35} \end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}M \in \left( P \right)\\M{A^2} = M{B^2}\\M{A^2} = 35\end{array} \right.\] nên ta có hệ phương trình sau:
\[\left\{ \begin{array}{l}2a - b - c + 4 = 0\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = {\left( {a - 5} \right)^2} + {\left( {b - 5} \right)^2} + {\left( {c - 1} \right)^2}\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}2a - b - c + 4 = 0\\4a - 8b - 12c = - 8\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}b = c\\c = a + 2\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}b = a + 2\\c = a + 2\\3{a^2} - 14a = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 2\\c = 2\end{array} \right.\] (do \[a \in \mathbb{Z}\]).
Ta có \[M\left( {0;2;2} \right)\] nên suy ra \[OM = 2\sqrt 2 .\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
I. Nhận biết
Cho hình lập phương \[ABCD.A'B'C'D'\]. Vectơ nào là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\]?
Câu 2:
Cho hai mặt phẳng \[\left( P \right):2x - y + 2z - 5 = 0\]; \[\left( Q \right):4x - 2y + 4z + 1 - m = 0\] và điểm \[M\left( {2;1;5} \right)\]. Khi đó:
a) Khoảng cách từ \[M\] đến mặt phẳng \[\left( P \right)\] bằng \[\frac{8}{3}.\]
b) Với \[m = 0\] thì khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng \[\frac{9}{2}.\]
c) Với \[m = 3\] thì khoảng cách giữa mặt phẳng \[\left( P \right)\] và mặt phẳng \[\left( Q \right)\] bằng \[3.\]
d) Có hai giá trị của \[m\] để khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng 1. Khi đó tổng của tất cả các giá trị \[m\] bằng 5.
Số mệnh đề đúng trong các mệnh đề trên là:
Câu 3:
II. Thông hiểu
Trong không gian \[Oxyz\], phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {2;1;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;3; - 1} \right)\] là
Câu 4:
Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?
Câu 5:
Trong không gian \[Oxyz\], cho điểm \[M\left( { - 1;2;0} \right)\] và mặt phẳng \[\left( P \right)\]: \[2x - 2y + z + 1 = 0\]. Khoảng cách từ điểm \[M\] đến mặt phẳng \[\left( P \right)\] là
Câu 6:
Trong không gian \[Oxyz\], khoảng cách giữa hai mặt phẳng \[\left( P \right):x + 2y + 3z - 1 = 0\] và \[\left( Q \right):x + 2y + 3z + 6 = 0\] là
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận