Câu hỏi:

13/10/2024 9,757 Lưu

Trong hệ tọa độ \[Oxyz\], cho ba điểm \[M\left( {1;0;0} \right)\], \[N\left( {0;1;0} \right)\] và \[P\left( {0;0;1} \right)\]. Cosin của góc giữa hai mặt phẳng \[\left( {MNP} \right)\] và \[\left( {Oxy} \right)\] bằng

A. \[\frac{1}{{\sqrt 3 }}.\]

B. \[\frac{1}{{\sqrt 5 }}.\]

C. \[\frac{2}{{\sqrt 5 }}.\]

D. \[\frac{1}{3}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[\overrightarrow {MN} = \left( { - 1;1;0} \right),\overrightarrow {MP} = \left( { - 1;0;1} \right),\]\[{\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;0;1} \right)\].

Suy ra \[{\overrightarrow n _{\left( {MNP} \right)}} = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&0\end{array}} \right|} \right) = \left( {1;1;1} \right).\]

Suy ra \[\cos \left( {\left( {MNP} \right),\left( {Oxy} \right)} \right) = \left| {\cos \left( {{{\overrightarrow n }_{\left( {Oxy} \right)}},{{\overrightarrow n }_{\left( {MNP} \right)}}} \right)} \right| = \frac{1}{{\sqrt 3 }}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có: \[{\overrightarrow n _{\left( P \right)}} = \left( {2; - 1; - 1} \right)\], \[{\overrightarrow n _{\left( Q \right)}} = \left( {1;0; - 1} \right)\].

Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng

\[\cos \left( {\left( P \right),\left( Q \right)} \right) = \cos \left| {{{\overrightarrow u }_{\left( P \right)}},{{\overrightarrow n }_{\left( Q \right)}}} \right|\]

\[ = \frac{{\left| {1.2 + 0.\left( { - 1} \right) + \left( { - 1} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}.\]

Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng \[30^\circ .\]

Lời giải

Đáp án đúng là: B

Vì \[d\] là giao tuyến của hai mặt phẳng \[\left( \alpha \right)\] và \[\left( \beta \right)\] nên \[{\overrightarrow u _d} = \left[ {{{\overrightarrow n }_{\left( \alpha \right)}},{{\overrightarrow n }_{\left( \beta \right)}}} \right]\].

Ta có: \[{\overrightarrow n _{\left( \alpha \right)}} = \left( {1; - 2;0} \right),{\overrightarrow n _{\left( \beta \right)}} = \left( {1; - 2; - 3} \right)\]

Suy ra \[{\overrightarrow u _d} = \left[ {{{\overrightarrow n }_{\left( \alpha \right)}},{{\overrightarrow n }_{\left( \beta \right)}}} \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&0\\{ - 2}&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&1\\{ - 3}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 2}\\{ - 2}&{ - 2}\end{array}} \right|} \right) = \left( {6;3; - 6} \right) = 3\left( {2;1; - 2} \right).\]

Lấy \[{\overrightarrow u _d} = \left( {2;1; - 2} \right)\], \[{\overrightarrow n _{\left( P \right)}} = \left( {3;4;5} \right)\].

Ta có: \[\sin \left( {d,\left( P \right)} \right) = \cos \left| {{{\overrightarrow u }_d},{{\overrightarrow n }_{\left( P \right)}}} \right| = \frac{{\left| {2.3 + 1.4 + \left( { - 2} \right).5} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{3^2} + {4^2} + {5^2}} }} = 0.\]

Vậy số đo góc \[\alpha \] giữa \[d\] và \[\left( P \right)\] là \[90^\circ .\]

Câu 4

A. \[\left( \alpha \right):3x + z = 0.\]

B. \[\left( \alpha \right):x - y - 3z = 0.\]

C. \[\left( \alpha \right):x + 3z = 0.\]

D. \[\left( \alpha \right):3x + z = 0\] hoặc \[\left( \alpha \right):8x + 5y + z = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \cos \left| {\left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right|.\]

B. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}.\]

C. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}.\]

D. \[\left( {{\Delta _1},{\Delta _2}} \right) = \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\] hoặc \[\left( {{\Delta _1},{\Delta _2}} \right) = 180^\circ - \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP