Câu hỏi:
13/10/2024 68Trong hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y - z - 3 = 0\] và \[\left( Q \right):x - z - 2 = 0\]. Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: \[{\overrightarrow n _{\left( P \right)}} = \left( {2; - 1; - 1} \right)\], \[{\overrightarrow n _{\left( Q \right)}} = \left( {1;0; - 1} \right)\].
Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng
\[\cos \left( {\left( P \right),\left( Q \right)} \right) = \cos \left| {{{\overrightarrow u }_{\left( P \right)}},{{\overrightarrow n }_{\left( Q \right)}}} \right|\]
\[ = \frac{{\left| {1.2 + 0.\left( { - 1} \right) + \left( { - 1} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}.\]
Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng \[30^\circ .\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
III. Vận dụng
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):3x + 4y + 5z + 2 = 0\] và đường thẳng \[d\] là giao tuyến của hai mặt phẳng \[\left( \alpha \right):x - 2y + 1 = 0\] và \[\left( \beta \right):x - 2y - 3z = 0\]. Hãy tính số đo góc \[\alpha \] giữa \[d\] và \[\left( P \right)\].
Câu 2:
Tìm tất cả các mặt phẳng \[\left( \alpha \right)\] chứa đường thẳng \[d:\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{{ - 3}}\] và tạo với mặt phẳng \[\left( P \right):2x - z + 1 = 0\] góc \[45^\circ .\]
Câu 3:
Trong không gian \[Oxyz\], cho hình chóp \[S.ABC\] có ba điểm \[S\left( {0;0;3} \right)\], \[A\left( {0;0;0} \right)\], \[B\left( {1;0;0} \right)\], \[C\left( {0;2;0} \right)\] và mặt phẳng \[\left( P \right):x + y + z - 3 = 0\]. Xét các mệnh đề sau:
a) Cosin góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[0.\]
b) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[\frac{2}{7}.\]
c) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( P \right)\] bằng \[\frac{{10\sqrt 3 }}{{21}}.\]
d) Góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[90^\circ .\]
Số mệnh đề đúng là
Câu 4:
Trong hệ tọa độ \[Oxyz\], cho ba điểm \[M\left( {1;0;0} \right)\], \[N\left( {0;1;0} \right)\] và \[P\left( {0;0;1} \right)\]. Cosin của góc giữa hai mặt phẳng \[\left( {MNP} \right)\] và \[\left( {Oxy} \right)\] bằng
Câu 5:
II. Thông hiểu
Cho hai đường thẳng \[{\Delta _1}:\frac{{x - 1}}{3} = \frac{y}{2} = \frac{{z + 1}}{1},{\rm{ }}{\Delta _2}:\frac{x}{{ - 1}} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 1}}\]. Góc giữa \[{\Delta _1}\] và \[{\Delta _2}\] là
Câu 6:
Trong không gian \[Oxyz\], hai đường thẳng \[{d_1}:\frac{{x - 2}}{1} = \frac{{y + 1}}{{\sqrt 2 }} = \frac{{z - 3}}{1}\] và \[{d_2}:\frac{{x + 5}}{1} = \frac{{y + 3}}{{\sqrt 2 }} = \frac{{z - 5}}{m}\] tạo với nhau góc \[60^\circ \], giá trị của tham số \[m\] bằng
về câu hỏi!