Trong không gian \[Oxyz\], cho hình chóp \[S.ABC\] có ba điểm \[S\left( {0;0;3} \right)\], \[A\left( {0;0;0} \right)\], \[B\left( {1;0;0} \right)\], \[C\left( {0;2;0} \right)\] và mặt phẳng \[\left( P \right):x + y + z - 3 = 0\]. Xét các mệnh đề sau:
a) Cosin góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[0.\]
b) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[\frac{2}{7}.\]
c) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( P \right)\] bằng \[\frac{{10\sqrt 3 }}{{21}}.\]
d) Góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[90^\circ .\]
Số mệnh đề đúng là
A. 1.
B. 2.
C. 3.
D. 0.
Quảng cáo
Trả lời:

Đáp án đúng là: C
Ta có: \[\overrightarrow {SA} = \left( {0;0; - 3} \right),\overrightarrow {SB} = \left( {1;0; - 3} \right),\overrightarrow {SC} = \left( {0;2; - 3} \right)\], \[\overrightarrow {AB} = \left( {1;0;0} \right)\], \[\overrightarrow {AC} = \left( {0;2;0} \right)\].
Suy ra \[{\overrightarrow n _{\left( {SAB} \right)}} = \left[ {\overrightarrow {SA} ,\overrightarrow {SB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 3}\\0&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&0\\{ - 3}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right|} \right) = \left( {0; - 3;0} \right).\]
\[{\overrightarrow n _{\left( {SBC} \right)}} = \left[ {\overrightarrow {SB} ,\overrightarrow {SC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 3}\\2&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 3}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&2\end{array}} \right|} \right) = \left( {6;3;2} \right).\]
\[{\overrightarrow n _{\left( {ABC} \right)}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&0\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&2\end{array}} \right|} \right) = \left( {0;0;2} \right).\]
\[{\overrightarrow n _{\left( {SAC} \right)}} = \left[ {\overrightarrow {SA} ,\overrightarrow {SC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 3}\\2&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 3}&0\\{ - 3}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&0\\0&2\end{array}} \right|} \right) = \left( { - 6;0;0} \right).\]
a) Cosin góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng
\[\cos \left( {\left( {SAB} \right),\left( {ABC} \right)} \right) = \cos \left( {{{\overrightarrow n }_{\left( {SAB} \right)}},{{\overrightarrow n }_{\left( {ABC} \right)}}} \right) = 0.\]
Do đó, ý a đúng.
b) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng
\[\cos \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \cos \left( {{{\overrightarrow n }_{\left( {SBC} \right)}},{{\overrightarrow n }_{\left( {ABC} \right)}}} \right) = \frac{{\left| {6.0 + 3.0 + 2.2} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} .\sqrt {{0^2} + {0^2} + {2^2}} }} = \frac{2}{7}.\]
Do đó, ý b đúng.
c) Ta có: \[{\overrightarrow n _{\left( P \right)}} = \left( {1;1;1} \right)\].
Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( P \right)\] bằng
\[\cos \left( {\left( {SBC} \right),\left( P \right)} \right) = \cos \left( {{{\overrightarrow n }_{\left( {SBC} \right)}},{{\overrightarrow n }_{\left( P \right)}}} \right) = \frac{{\left| {6.1 + 3.1 + 2.1} \right|}}{{\sqrt {{6^2} + {3^2} + {2^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{11\sqrt 3 }}{{21}}.\]
Do đó, ý c sai.
d) Ta có:
\[\cos \left( {\left( {SAC} \right),\left( {ABC} \right)} \right) = \cos \left( {{{\overrightarrow n }_{\left( {SAC} \right)}},{{\overrightarrow n }_{\left( {ABC} \right)}}} \right) = \frac{{\left| { - 6.0 + 0.0 + 0.2} \right|}}{{\sqrt {{{\left( { - 6} \right)}^2} + {0^2} + {0^2}} .\sqrt {{0^2} + {0^2} + {2^2}} }} = 0.\]
Vậy góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[90^\circ .\]
Vậy ý d đúng.
Vậy có 3 mệnh đề đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\frac{1}{{\sqrt 3 }}.\]
B. \[\frac{1}{{\sqrt 5 }}.\]
C. \[\frac{2}{{\sqrt 5 }}.\]
D. \[\frac{1}{3}.\]
Lời giải
Đáp án đúng là: A
Ta có: \[\overrightarrow {MN} = \left( { - 1;1;0} \right),\overrightarrow {MP} = \left( { - 1;0;1} \right),\]\[{\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;0;1} \right)\].
Suy ra \[{\overrightarrow n _{\left( {MNP} \right)}} = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&0\end{array}} \right|} \right) = \left( {1;1;1} \right).\]
Suy ra \[\cos \left( {\left( {MNP} \right),\left( {Oxy} \right)} \right) = \left| {\cos \left( {{{\overrightarrow n }_{\left( {Oxy} \right)}},{{\overrightarrow n }_{\left( {MNP} \right)}}} \right)} \right| = \frac{1}{{\sqrt 3 }}.\]
Câu 2
A. \[0^\circ.\]
B. \[90^\circ.\]
C. \[45^\circ.\]
D. \[30^\circ.\]
Lời giải
Đáp án đúng là: D
Ta có: \[{\overrightarrow n _{\left( P \right)}} = \left( {2; - 1; - 1} \right)\], \[{\overrightarrow n _{\left( Q \right)}} = \left( {1;0; - 1} \right)\].
Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng
\[\cos \left( {\left( P \right),\left( Q \right)} \right) = \cos \left| {{{\overrightarrow u }_{\left( P \right)}},{{\overrightarrow n }_{\left( Q \right)}}} \right|\]
\[ = \frac{{\left| {1.2 + 0.\left( { - 1} \right) + \left( { - 1} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}.\]
Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng \[30^\circ .\]
Câu 3
A. \[60^\circ.\]
B. \[90^\circ.\]
C. \[45^\circ.\]
D. \[30^\circ.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\left( \alpha \right):3x + z = 0.\]
B. \[\left( \alpha \right):x - y - 3z = 0.\]
C. \[\left( \alpha \right):x + 3z = 0.\]
D. \[\left( \alpha \right):3x + z = 0\] hoặc \[\left( \alpha \right):8x + 5y + z = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \cos \left| {\left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right|.\]
B. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}.\]
C. \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}}.\]
D. \[\left( {{\Delta _1},{\Delta _2}} \right) = \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)\] hoặc \[\left( {{\Delta _1},{\Delta _2}} \right) = 180^\circ - \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.