III. Vận dụng
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):3x + 4y + 5z + 2 = 0\] và đường thẳng \[d\] là giao tuyến của hai mặt phẳng \[\left( \alpha \right):x - 2y + 1 = 0\] và \[\left( \beta \right):x - 2y - 3z = 0\]. Hãy tính số đo góc \[\alpha \] giữa \[d\] và \[\left( P \right)\].
Quảng cáo
Trả lời:

Đáp án đúng là: B
Vì \[d\] là giao tuyến của hai mặt phẳng \[\left( \alpha \right)\] và \[\left( \beta \right)\] nên \[{\overrightarrow u _d} = \left[ {{{\overrightarrow n }_{\left( \alpha \right)}},{{\overrightarrow n }_{\left( \beta \right)}}} \right]\].
Ta có: \[{\overrightarrow n _{\left( \alpha \right)}} = \left( {1; - 2;0} \right),{\overrightarrow n _{\left( \beta \right)}} = \left( {1; - 2; - 3} \right)\]
Suy ra \[{\overrightarrow u _d} = \left[ {{{\overrightarrow n }_{\left( \alpha \right)}},{{\overrightarrow n }_{\left( \beta \right)}}} \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&0\\{ - 2}&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&1\\{ - 3}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 2}\\{ - 2}&{ - 2}\end{array}} \right|} \right) = \left( {6;3; - 6} \right) = 3\left( {2;1; - 2} \right).\]
Lấy \[{\overrightarrow u _d} = \left( {2;1; - 2} \right)\], \[{\overrightarrow n _{\left( P \right)}} = \left( {3;4;5} \right)\].
Ta có: \[\sin \left( {d,\left( P \right)} \right) = \cos \left| {{{\overrightarrow u }_d},{{\overrightarrow n }_{\left( P \right)}}} \right| = \frac{{\left| {2.3 + 1.4 + \left( { - 2} \right).5} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{3^2} + {4^2} + {5^2}} }} = 0.\]
Vậy số đo góc \[\alpha \] giữa \[d\] và \[\left( P \right)\] là \[90^\circ .\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có: \[\overrightarrow {MN} = \left( { - 1;1;0} \right),\overrightarrow {MP} = \left( { - 1;0;1} \right),\]\[{\overrightarrow n _{\left( {Oxy} \right)}} = \left( {0;0;1} \right)\].
Suy ra \[{\overrightarrow n _{\left( {MNP} \right)}} = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&0\end{array}} \right|} \right) = \left( {1;1;1} \right).\]
Suy ra \[\cos \left( {\left( {MNP} \right),\left( {Oxy} \right)} \right) = \left| {\cos \left( {{{\overrightarrow n }_{\left( {Oxy} \right)}},{{\overrightarrow n }_{\left( {MNP} \right)}}} \right)} \right| = \frac{1}{{\sqrt 3 }}.\]
Lời giải
Đáp án đúng là: D
Ta có: \[{\overrightarrow n _{\left( P \right)}} = \left( {2; - 1; - 1} \right)\], \[{\overrightarrow n _{\left( Q \right)}} = \left( {1;0; - 1} \right)\].
Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng
\[\cos \left( {\left( P \right),\left( Q \right)} \right) = \cos \left| {{{\overrightarrow u }_{\left( P \right)}},{{\overrightarrow n }_{\left( Q \right)}}} \right|\]
\[ = \frac{{\left| {1.2 + 0.\left( { - 1} \right) + \left( { - 1} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {0^2} + {{\left( { - 1} \right)}^2}} }} = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}.\]
Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng \[30^\circ .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.