Câu hỏi:

13/10/2024 56

III. Vận dụng

Trong không gian \[Oxyz\], mặt cầu (S) đi qua điểm \[O\] và cắt các tia \[Ox,\]\[Oy,\]\[Oz\] lần lượt tại các điểm \[A,B,C\] khác \[O\] thỏa mãn tam giác \[ABC\] có trọng tâm là điểm \[G\left( { - 6; - 12;18} \right)\]. Tọa độ tâm của mặt cầu (S) là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Gọi \[A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\].

Tam giác \[ABC\] có trọng tâm \[G\left( { - 6; - 12;18} \right)\] nên ta có:

\[\left\{ \begin{array}{l}\frac{{a + 0 + 0}}{3} = - 6\\\frac{{0 + b + 0}}{3} = - 12\\\frac{{0 + 0 + c}}{3} = 18\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 18\\b = - 36\\c = 54\end{array} \right.\].

Suy ra \[A\left( { - 18;0;0} \right),B\left( {0; - 36;0} \right),C\left( {0;0;54} \right)\].

Gọi \[I\left( {x;y;z} \right)\], ta có: \[\left\{ \begin{array}{l}IO = IA\\IA = IB\\IB = IC\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}I{O^2} = I{A^2}\\I{A^2} = I{B^2}\\I{B^2} = I{C^2}\end{array} \right.\].

\[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = {\left( {x + 18} \right)^2} + {y^2} + {z^2}\\{\left( {x + 18} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y + 36} \right)^2} + {z^2}\\{x^2} + {\left( {y + 36} \right)^2} + {z^2} = {x^2} + {y^2} + {\left( {z - 54} \right)^2}\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}36x + 324 = 0\\36x + 324 - 72y - 1296 = 0\\72y + 1296 + 108z - 2916 = 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x = - 9\\y = - 18\\z = 27\end{array} \right.\].

Vậy tâm của mặt cầu là \[I\left( { - 9; - 18;27} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]

Xem đáp án » 13/10/2024 151

Câu 2:

Trong không gian với hệ trục tọa độ \[Oxyz\], phương trình nào sau đây là phương trình mặt cầu

Xem đáp án » 13/10/2024 76

Câu 3:

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {1;0;0} \right),B\left( {0;0;3} \right),C\left( {0;2;0} \right)\]. Tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bao nhiêu?

Xem đáp án » 13/10/2024 64

Câu 4:

Trong các phương trình sau, phương trình nào là phương trình mặt cầu?

Xem đáp án » 13/10/2024 54

Câu 5:

Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là

Xem đáp án » 13/10/2024 52

Câu 6:

Điều kiện đề phương trình \[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] là phương trình mặt cầu là

Xem đáp án » 13/10/2024 47

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store