Câu hỏi:
13/10/2024 75Trong không gian với hệ trục tọa độ \[Oxyz\], phương trình nào sau đây là phương trình mặt cầu
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Phương trình mặt cầu có dạng
\[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] với \[d = {a^2} + {b^2} + {c^2} - {R^2}.\]
Xét các đáp án, chỉ có đáp án A thỏa mãn, đồng thời ta có thể viết lại như sau:
\[{x^2} + {y^2} + {z^2} - 2x = 0\] hay \[{\left( {x - 1} \right)^2} + {y^2} + {z^2} = 1\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]
Câu 2:
Trong không gian \[Oxyz\], cho ba điểm \[A\left( {1;0;0} \right),B\left( {0;0;3} \right),C\left( {0;2;0} \right)\]. Tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bao nhiêu?
Câu 3:
III. Vận dụng
Trong không gian \[Oxyz\], mặt cầu (S) đi qua điểm \[O\] và cắt các tia \[Ox,\]\[Oy,\]\[Oz\] lần lượt tại các điểm \[A,B,C\] khác \[O\] thỏa mãn tam giác \[ABC\] có trọng tâm là điểm \[G\left( { - 6; - 12;18} \right)\]. Tọa độ tâm của mặt cầu (S) là
Câu 4:
Trong các phương trình sau, phương trình nào là phương trình mặt cầu?
Câu 5:
Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là
Câu 6:
Trong không gian \[Oxyz\], cho điểm \[H\left( {1;2; - 2} \right)\]. Mặt phẳng \[\left( \alpha \right)\] đi qua \[H\] và cắt các trục \[Ox,Oy,Oz\] tại \[A,B,C\] sao cho \[H\] là trực tâm của tam giác \[ABC\]. Viết phương trình mặt cầu tâm \[O\] và tiếp xúc với mặt phẳng \[\left( \alpha \right)\].
về câu hỏi!