Câu hỏi:

14/10/2024 4,771

Tìm nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - 2{x^2} + x - 2019\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: \[\int {f\left( x \right)dx} = \int {\left( {\frac{1}{3}{x^3} - 2{x^2} + x - 2019} \right)} dx\]\[ = \frac{1}{{12}}{x^4} - \frac{2}{3}{x^3} + \frac{{{x^2}}}{2} - 2019x + C.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Ta có: \[\int {f\left( x \right)dx} = \int {\left( {2x + 6} \right)} dx = {x^2} + 6x + C.\]

Câu 2

Lời giải

Đáp án đúng là: B

Ta có: \[\int {{x^{2022}}} dx = \frac{{{x^{2023}}}}{{2023}} + C.\]

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP