Giả sử \[F\left( x \right)\] là một nguyên hàm của \[f\left( x \right) = \frac{{\ln \left( {x + 3} \right)}}{{{x^2}}}\] với \[x > - 3\] sao cho \[F\left( { - 2} \right) + F\left( 1 \right) = 0\]. Giá trị của \[F\left( { - 1} \right) + F\left( 2 \right)\] bằng
A. \[\frac{2}{3}\ln 2 + \frac{5}{6}\ln 5.\]
B. \[0.\]
C. \[\frac{7}{3}\ln 2.\]
D. \[\frac{{10}}{3}\ln 2 - \frac{5}{6}\ln 5.\]
Quảng cáo
Trả lời:

Đáp án đúng là: D
Đặt \[\left\{ \begin{array}{l}u = \ln \left( {x + 3} \right)\\dv = \frac{{dx}}{{{x^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = \frac{{dx}}{{x + 3}}\\v = \frac{1}{x}\end{array} \right.\]
Ta có: \[\int {\frac{{\ln \left( {x + 3} \right)}}{{{x^2}}}} dx = - \frac{1}{x}\ln \left( {x + 3} \right) + \int {\frac{{dx}}{{x\left( {x + 3} \right)}}} \]
Đặt \[I = \int {\frac{{dx}}{{x\left( {x + 3} \right)}}} = \frac{1}{3}\int {\left( {\frac{1}{x} - \frac{1}{{x + 3}}} \right)dx = \frac{1}{3}\ln \left| x \right| - \frac{1}{3}\ln \left| {x + 3} \right| = \frac{1}{3}\ln \left| {\frac{x}{{x + 3}}} \right|} \].
Suy ra \[F\left( x \right) = - \frac{1}{x}\ln \left( {x + 3} \right) + \frac{1}{3}\ln \left| {\frac{x}{{x + 3}}} \right| + C.\]
Lại có \[F\left( { - 2} \right) + F\left( 1 \right) = 0\]
\[\left( {\frac{1}{3}\ln 2 + C} \right) + \left( { - \ln 4 + \frac{1}{3}\ln \frac{1}{4} + C} \right) = 0\]
\[ \Leftrightarrow 2C = \frac{7}{3}\ln 2 \Leftrightarrow C = \frac{7}{6}\ln 2.\]
Suy ra \[F\left( { - 1} \right) + F\left( 2 \right) = \ln 2 + \frac{1}{3}\ln 2 - \frac{1}{2}\ln 5 + \frac{1}{3}\ln \frac{2}{5} + \frac{7}{3}\ln 2 = \frac{{10}}{3}\ln 2 - \frac{5}{6}\ln 5.\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\frac{x}{2} - \frac{{\sin 2x}}{4} + C.\]
B. \[\frac{x}{2} + \frac{{\sin 2x}}{4} + C.\]
Lời giải
Đáp án đúng là: A
Ta có: \[\int {f\left( x \right)dx} = \int {{{\sin }^2}xdx = \int {\left( {\frac{{1 - \cos 2x}}{2}} \right)dx} } \]
\[ = \int {\frac{1}{2}dx - \frac{1}{2}} \int {\cos 2xdx = \frac{1}{2}x - \frac{{\sin 2x}}{4} + C.} \]
Câu 2
A. \[F\left( 2 \right) = 2 + 9\ln 2.\]
B. \[F\left( 2 \right) = - 2 + 9\ln 2.\]
C. \[F\left( 2 \right) = 1 + 9\ln 2.\]
D. \[F\left( 2 \right) = 7.\]
Lời giải
Đáp án đúng là: B
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx} = \int {\frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}} dx\]
\[ = \int {\frac{{x\left( {{x^2} - 6x + 9} \right)}}{{{x^2}}}} dx\]
\[ = \int {\frac{{{x^3} - 6{x^2} + 9x}}{{{x^2}}}} dx\]
\[ = \int {\left( {x - 6 + \frac{9}{x}} \right)} dx\]
\[ = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + C.\]
Mà \[F\left( 1 \right) = \frac{5}{2}\] nên \[\frac{1}{2} - 6 + 9\ln \left| 1 \right| + C = \frac{5}{2}\] hay C = 8.
Suy ra \[F\left( x \right) = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + 8.\]
Do đó, \[F\left( 2 \right) = 9\ln 2 - 2\].
Câu 3
A. \[\frac{3}{2}.\]
B. \[ - \frac{3}{2}.\]
C. \[ - \frac{5}{2}.\]
D. \[\frac{5}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\frac{1}{3}{e^{3x}} + \frac{3}{2}{e^{ - 2x}} + C.\]
B. \[\frac{1}{3}{e^{3x}} - \frac{3}{2}{e^{ - 2x}} + C.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\int {\left( {3\cos x - 1} \right)dx = 3\sin x - x + C.} \]
B. \[\int {\left( {3\cos x - 1} \right)dx = - 3\sin x - x + C.} \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\int {{x^\alpha }dx = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C{\rm{ }}\left( {\alpha \ne - 1} \right)} .\]
B. \[\int {{x^\alpha }dx = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C{\rm{ }}} .\]
C. \[\int {{x^\alpha }dx = \frac{{{x^{\alpha - 1}}}}{{\alpha - 1}} + C{\rm{ }}\left( {\alpha \ne - 1} \right){\rm{. }}} \]
D. \[\int {{x^\alpha }dx = \frac{{{x^\alpha }}}{\alpha } + C{\rm{ }}} .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.