Câu hỏi:

14/10/2024 14,553 Lưu

Nguyên hàm của hàm số \[f\left( x \right) = {\sin ^2}x\] là

A. \[\frac{x}{2} - \frac{{\sin 2x}}{4} + C.\]

B. \[\frac{x}{2} + \frac{{\sin 2x}}{4} + C.\]

C. \[\frac{x}{2} - \frac{{\sin 2x}}{2} + C.\]
D. \[\frac{x}{2} + \frac{{\sin 2x}}{2} + C.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[\int {f\left( x \right)dx} = \int {{{\sin }^2}xdx = \int {\left( {\frac{{1 - \cos 2x}}{2}} \right)dx} } \]

\[ = \int {\frac{1}{2}dx - \frac{1}{2}} \int {\cos 2xdx = \frac{1}{2}x - \frac{{\sin 2x}}{4} + C.} \]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có: \[F\left( x \right) = \int {f\left( x \right)dx} = \int {\frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}} dx\]

\[ = \int {\frac{{x\left( {{x^2} - 6x + 9} \right)}}{{{x^2}}}} dx\]

\[ = \int {\frac{{{x^3} - 6{x^2} + 9x}}{{{x^2}}}} dx\]

\[ = \int {\left( {x - 6 + \frac{9}{x}} \right)} dx\]

\[ = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + C.\]

Mà \[F\left( 1 \right) = \frac{5}{2}\] nên \[\frac{1}{2} - 6 + 9\ln \left| 1 \right| + C = \frac{5}{2}\] hay C = 8.

Suy ra \[F\left( x \right) = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + 8.\]

Do đó, \[F\left( 2 \right) = 9\ln 2 - 2\].

Lời giải

Đáp án đúng là: A

Từ giả thiết, ta có: \[{\left( {{x^2} + 1} \right)^2}f'\left( x \right) = {\left[ {f\left( x \right)} \right]^2}\left( {{x^2} - 1} \right)\]

\[ \Leftrightarrow f'\left( x \right) = \frac{{{{\left[ {f\left( x \right)} \right]}^2}\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} > 0,\forall x \in \left[ {1;2} \right]\].

Xét với mọi \[x \in \left[ {1;2} \right]\], ta có:

\[\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}} = \frac{{\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} \Leftrightarrow \int {\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx} = \int {\frac{{\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}} dx\].

\[ \Rightarrow \int {\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx} = \int {\frac{{\left( {1 - \frac{1}{{{x^2}}}} \right)}}{{{{\left( {x + \frac{1}{x}} \right)}^2}}}} dx = \int {\frac{{d\left( {x + \frac{1}{x}} \right)}}{{{{\left( {x + \frac{1}{x}} \right)}^2}}}} \]

\[ \Rightarrow - \frac{1}{{f\left( x \right)}} = \frac{{ - 1}}{{x + \frac{1}{x}}} + C \Leftrightarrow f\left( x \right) = x + \frac{1}{x} + C.\]

Mà \[f\left( 1 \right) = 1 \Leftrightarrow 1 = 2 + C \Leftrightarrow C = - 1\].

Vậy \[f\left( x \right) = x + \frac{1}{x} - 1\].

Suy ra \[f\left( 2 \right) = 2 + \frac{1}{2} - 1 = \frac{3}{2}.\]

Câu 3

A. \[\frac{1}{3}{e^{3x}} + \frac{3}{2}{e^{ - 2x}} + C.\]

B. \[\frac{1}{3}{e^{3x}} - \frac{3}{2}{e^{ - 2x}} + C.\]

C. \[{e^{3x}} - 3{e^{ - 2x}} + C.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\int {\left( {3\cos x - 1} \right)dx = 3\sin x - x + C.} \]

B. \[\int {\left( {3\cos x - 1} \right)dx = - 3\sin x - x + C.} \]

C. \[\int {\left( {3\cos x - 1} \right)dx = 3\sin x - 1 + C.} \]
D. \[\int {\left( {3\cos x - 1} \right)dx = - 3\sin x + x + C.} \]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\int {{x^\alpha }dx = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C{\rm{ }}\left( {\alpha \ne - 1} \right)} .\]

B. \[\int {{x^\alpha }dx = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C{\rm{ }}} .\]

C. \[\int {{x^\alpha }dx = \frac{{{x^{\alpha - 1}}}}{{\alpha - 1}} + C{\rm{ }}\left( {\alpha \ne - 1} \right){\rm{. }}} \]

D. \[\int {{x^\alpha }dx = \frac{{{x^\alpha }}}{\alpha } + C{\rm{ }}} .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP