Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \[\int {f\left( x \right)dx} = \int {{{\sin }^2}xdx = \int {\left( {\frac{{1 - \cos 2x}}{2}} \right)dx} } \]
\[ = \int {\frac{1}{2}dx - \frac{1}{2}} \int {\cos 2xdx = \frac{1}{2}x - \frac{{\sin 2x}}{4} + C.} \]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx} = \int {\frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}} dx\]
\[ = \int {\frac{{x\left( {{x^2} - 6x + 9} \right)}}{{{x^2}}}} dx\]
\[ = \int {\frac{{{x^3} - 6{x^2} + 9x}}{{{x^2}}}} dx\]
\[ = \int {\left( {x - 6 + \frac{9}{x}} \right)} dx\]
\[ = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + C.\]
Mà \[F\left( 1 \right) = \frac{5}{2}\] nên \[\frac{1}{2} - 6 + 9\ln \left| 1 \right| + C = \frac{5}{2}\] hay C = 8.
Suy ra \[F\left( x \right) = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + 8.\]
Do đó, \[F\left( 2 \right) = 9\ln 2 - 2\].
Lời giải
Đáp án đúng là: A
Từ giả thiết, ta có: \[{\left( {{x^2} + 1} \right)^2}f'\left( x \right) = {\left[ {f\left( x \right)} \right]^2}\left( {{x^2} - 1} \right)\]
\[ \Leftrightarrow f'\left( x \right) = \frac{{{{\left[ {f\left( x \right)} \right]}^2}\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} > 0,\forall x \in \left[ {1;2} \right]\].
Xét với mọi \[x \in \left[ {1;2} \right]\], ta có:
\[\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}} = \frac{{\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} \Leftrightarrow \int {\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx} = \int {\frac{{\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}} dx\].
\[ \Rightarrow \int {\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx} = \int {\frac{{\left( {1 - \frac{1}{{{x^2}}}} \right)}}{{{{\left( {x + \frac{1}{x}} \right)}^2}}}} dx = \int {\frac{{d\left( {x + \frac{1}{x}} \right)}}{{{{\left( {x + \frac{1}{x}} \right)}^2}}}} \]
\[ \Rightarrow - \frac{1}{{f\left( x \right)}} = \frac{{ - 1}}{{x + \frac{1}{x}}} + C \Leftrightarrow f\left( x \right) = x + \frac{1}{x} + C.\]
Mà \[f\left( 1 \right) = 1 \Leftrightarrow 1 = 2 + C \Leftrightarrow C = - 1\].
Vậy \[f\left( x \right) = x + \frac{1}{x} - 1\].
Suy ra \[f\left( 2 \right) = 2 + \frac{1}{2} - 1 = \frac{3}{2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.