Câu hỏi:

14/10/2024 230

Cho các mệnh đề dưới đây:

(I). \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]

(II). \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{6} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].

(III). \[F\left( x \right) = \frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C\] là nguyên hàm của hàm số

\[f\left( x \right) = \frac{{2{x^3}\sqrt x }}{7} - 2{x^2}\sqrt x + \frac{2}{3}x\sqrt x + C.\]

Số mệnh đề đúng trong các mệnh đề trên là

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

(I): \[\int {f\left( x \right)dx} = \int {\left( {{x^3} - 3x + \frac{1}{x}} \right)} dx\]\[ = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C.\]

Vậy \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]

Mệnh đề (I) là mệnh đề đúng.

(II): \[\int {f\left( x \right)dx} = \int {{{\left( {5x + 3} \right)}^5}dx} \]\[ = \frac{{{{\left( {5x + 3} \right)}^6}}}{{30}} + C\]

Vậy \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{{30}} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].

Mệnh đề (II) là mệnh đề sai.

(III). Ta có: \[F'\left( x \right) = {\left( {\frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C} \right)^\prime }\]

\[ = {\left( {\frac{3}{2}{x^{\frac{3}{2}}} + \frac{4}{3}{x^{\frac{4}{3}}} + \frac{5}{4}{x^{\frac{5}{4}}} + C} \right)^\prime }\]

\[ = \frac{9}{4}{x^{\frac{1}{2}}} + \frac{{16}}{9}{x^{\frac{1}{3}}} + \frac{{25}}{{16}}{x^{\frac{1}{4}}}\]

\[ = \frac{9}{4}\sqrt x + \frac{{16}}{9}\sqrt[3]{x} + \frac{{25}}{{16}}\sqrt[4]{x}\].

Vậy mệnh đề (III) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] với \[f\left( x \right) = \frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}\] biết \[F\left( 1 \right) = \frac{5}{2}\]. Tính \[F\left( 2 \right)\].

Xem đáp án » 14/10/2024 1,006

Câu 2:

Cho hàm số \[f\left( x \right)\] thỏa mãn \[f\left( 1 \right) = 1\] và \[{\left( {{x^2} + 1} \right)^2}f'\left( x \right) = {\left[ {f\left( x \right)} \right]^2}\left( {{x^2} - 1} \right)\] với mọi \[x \in \mathbb{R}\]. Giá trị của \[f\left( 2 \right)\] bằng

Xem đáp án » 14/10/2024 508

Câu 3:

I. Nhận biết

Chọn mệnh đề đúng trong các mệnh đề dưới đây.

Xem đáp án » 14/10/2024 258

Câu 4:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {e^{3x}}\left( {1 - 3{e^{ - 5x}}} \right)\]

Xem đáp án » 14/10/2024 235

Câu 5:

Nguyên hàm của hàm số \[f\left( x \right) = 3\cos x - 1\] bằng

Xem đáp án » 14/10/2024 183

Câu 6:

Cho hàm số \[f\left( x \right) = 2x + {e^x}\]. Tìm một nguyên hàm \[F\left( x \right)\] của hàm số \[f\left( x \right)\] thỏa mãn \[F\left( 0 \right) = 2024.\]

Xem đáp án » 14/10/2024 168

Bình luận


Bình luận