Cho các mệnh đề dưới đây:
(I). \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]
(II). \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{6} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].
(III). \[F\left( x \right) = \frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C\] là nguyên hàm của hàm số
\[f\left( x \right) = \frac{{2{x^3}\sqrt x }}{7} - 2{x^2}\sqrt x + \frac{2}{3}x\sqrt x + C.\]
Số mệnh đề đúng trong các mệnh đề trên là
Quảng cáo
Trả lời:

Đáp án đúng là: A
(I): \[\int {f\left( x \right)dx} = \int {\left( {{x^3} - 3x + \frac{1}{x}} \right)} dx\]\[ = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C.\]
Vậy \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]
Mệnh đề (I) là mệnh đề đúng.
(II): \[\int {f\left( x \right)dx} = \int {{{\left( {5x + 3} \right)}^5}dx} \]\[ = \frac{{{{\left( {5x + 3} \right)}^6}}}{{30}} + C\]
Vậy \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{{30}} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].
Mệnh đề (II) là mệnh đề sai.
(III). Ta có: \[F'\left( x \right) = {\left( {\frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C} \right)^\prime }\]
\[ = {\left( {\frac{3}{2}{x^{\frac{3}{2}}} + \frac{4}{3}{x^{\frac{4}{3}}} + \frac{5}{4}{x^{\frac{5}{4}}} + C} \right)^\prime }\]
\[ = \frac{9}{4}{x^{\frac{1}{2}}} + \frac{{16}}{9}{x^{\frac{1}{3}}} + \frac{{25}}{{16}}{x^{\frac{1}{4}}}\]
\[ = \frac{9}{4}\sqrt x + \frac{{16}}{9}\sqrt[3]{x} + \frac{{25}}{{16}}\sqrt[4]{x}\].
Vậy mệnh đề (III) là sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có: \[\int {f\left( x \right)dx} = \int {{{\sin }^2}xdx = \int {\left( {\frac{{1 - \cos 2x}}{2}} \right)dx} } \]
\[ = \int {\frac{1}{2}dx - \frac{1}{2}} \int {\cos 2xdx = \frac{1}{2}x - \frac{{\sin 2x}}{4} + C.} \]
Lời giải
Đáp án đúng là: B
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx} = \int {\frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}} dx\]
\[ = \int {\frac{{x\left( {{x^2} - 6x + 9} \right)}}{{{x^2}}}} dx\]
\[ = \int {\frac{{{x^3} - 6{x^2} + 9x}}{{{x^2}}}} dx\]
\[ = \int {\left( {x - 6 + \frac{9}{x}} \right)} dx\]
\[ = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + C.\]
Mà \[F\left( 1 \right) = \frac{5}{2}\] nên \[\frac{1}{2} - 6 + 9\ln \left| 1 \right| + C = \frac{5}{2}\] hay C = 8.
Suy ra \[F\left( x \right) = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + 8.\]
Do đó, \[F\left( 2 \right) = 9\ln 2 - 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.