Câu hỏi:

14/10/2024 250

II. Thông hiểu

Tính \[I = \int\limits_{ - 1}^0 {{{\left( {2x + 3} \right)}^2}dx} \]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[I = \int\limits_{ - 1}^0 {{{\left( {2x + 3} \right)}^2}dx} = \left. {\frac{{{{\left( {2x + 3} \right)}^3}}}{6}} \right|_{ - 1}^0 = \frac{{27}}{6} - \frac{1}{6} = \frac{{13}}{3}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \[\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\left( {2\sin x + 3\cos x + x} \right)dx} \]

\[ = \left. {\left( { - 2\cos x + 3\sin x + \frac{{{x^2}}}{2}} \right)} \right|_{\frac{\pi }{3}}^{\frac{\pi }{2}}\]

\[ = 3 + \frac{{{\pi ^2}}}{8} + 1 - \frac{{3\sqrt 3 }}{2} - \frac{{{\pi ^2}}}{{18}} = \frac{{8 - 3\sqrt 3 }}{2} - \frac{{5{\pi ^2}}}{{72}}\].

Do đó, \[a = 8,b = - 3,c = 72.\]

Vậy \[P = a + 2b + 3c = 8 + 2.\left( { - 3} \right) + 3.72 = 218.\]

Câu 2

Lời giải

Đáp án đúng là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP