Câu hỏi:

17/10/2024 244

Điều kiện xác định của biểu thức \(\sqrt { - 12x + 5} \) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Để biểu thức \(\sqrt { - 12x + 5} \) xác định thì \( - 12x + 5 \ge 0\) hay \( - 12x \ge - 5\), tức là \(x \le \frac{5}{{12}}\).

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

⦁ Áp dụng định lí Pythagore cho \(\Delta AA'M\) vuông tại \(A'\) ta có:

\(M{A^2} = A{A'^2} + A'{M^2} = {600^2} + {x^2} = 360\,\,000 + {x^2}\)

Suy ra \[MA = \sqrt {360\,\,000 + {x^2}} \] (m).

Ta có \(A'B' = A'M + B'M,\) suy ra \(B'M = A'B' - A'M = 2\,\,500 - x{\rm{\;(m)}}{\rm{.}}\)

Áp dụng định lí Pythagore cho \(\Delta BB'M\) vuông tại \(B'\) ta có:

\[M{B^2} = B{B'^2} + {\rm{ }}B'{M^2} = {700^2} + {\left( {2{\rm{ }}500--x} \right)^2} = 490{\rm{ }}000 + {\left( {2{\rm{ }}500--x} \right)^2}\]

Suy ra \[MB = \sqrt {490{\rm{ }}000 + {{\left( {2{\rm{ }}500--x} \right)}^2}} \] (m).

Khi đó, tổng khoảng cách \[MA + MB\] theo \[x\] là:

\[MA + MB = \sqrt {360\,\,000 + {x^2}} + \sqrt {490\,\,000 + {{\left( {2\,\,500 - x} \right)}^2}} \] (m).

Khi \[x = 1{\rm{ }}200,\] ta có tổng khoảng cách \[MA + MB\] là:

⦁ \[MA + MB = \sqrt {360\,\,000 + 1\,\,{{200}^2}} + \sqrt {490\,\,000 + {{\left( {2\,\,500 - 1\,\,200} \right)}^2}} \]

\[ = \sqrt {1\,\,800\,\,000} + \sqrt {2\,\,180\,\,000} \]

\[ \approx 2\,\,818{\rm{\;(m)}}{\rm{.}}\]

Vậy tổng khoảng cách \[MA + MB\] khoảng 2 818 m khi \(x = 1\,\,200\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP