Câu hỏi:

17/10/2024 197

II. Thông hiểu

Rút gọn biểu thức \(\sqrt {\frac{{4{a^2}}}{3}} - 3\sqrt {\frac{{{a^2}}}{{27}}} \) với \(a > 0,\) ta được kết quả là

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Với \(a > 0,\) ta có: \(\sqrt {\frac{{4{a^2}}}{3}} - 3\sqrt {\frac{{{a^2}}}{{27}}} = \frac{{\sqrt {{{\left( {2a} \right)}^2}} }}{{\sqrt 3 }} - 3 \cdot \frac{{\sqrt {{a^2}} }}{{\sqrt {{3^2} \cdot 3} }} = \frac{{\left| {2a} \right|}}{{\sqrt 3 }} - \frac{{3 \cdot \left| a \right|}}{{3\sqrt 3 }}\)

\( = \frac{{2a}}{{\sqrt 3 }} - \frac{a}{{\sqrt 3 }}\) (do \(a > 0\) nên \(\left| a \right| = a)\)

\( = \frac{a}{{\sqrt 3 }} = \frac{{a\sqrt 3 }}{3}.\)

Vậy ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn biểu thức \(\frac{{x - 4\sqrt x + 4}}{{x - 2\sqrt x }}\) với \(x > 0,\,\,x \ne 4\) ta được kết quả là

Xem đáp án » 17/10/2024 1,757

Câu 2:

Cho hai biểu thức \(A\) và \(B\). Khẳng định nào sau đây là sai?

Xem đáp án » 17/10/2024 1,336

Câu 3:

Rút gọn biểu thức \(\sqrt {{a^2}{{\left( {5 - a} \right)}^2}} \) với \(a > 5\) ta được kết quả là

Xem đáp án » 17/10/2024 777

Câu 4:

I. Nhận biết

Cho biểu thức \(A < 0.\) Khẳng định nào sau đây là đúng?

Xem đáp án » 17/10/2024 360

Câu 5:

Giả sử các căn thức đều có nghĩa. Nếu \(\sqrt {x + 10} - \sqrt {x - 10} = 4\) thì \(\sqrt {x + 10} + \sqrt {x - 10} \) bằng

Xem đáp án » 17/10/2024 357

Câu 6:

Chọn phát biểu sai trong các phát biểu sau:

Xem đáp án » 17/10/2024 268