Câu hỏi:

17/10/2024 170

Rút gọn biểu thức \(\left( {\frac{3}{{\sqrt {1 + a} }} + \sqrt {1 - a} } \right):\left( {\frac{3}{{\sqrt {1 - {a^2}} }} + 1} \right)\) với \( - 1 < a < 1\) ta được

</>

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Với \( - 1 < a < 1\), ta có:

\(\left( {\frac{3}{{\sqrt {1 + a} }} + \sqrt {1 - a} } \right):\left( {\frac{3}{{\sqrt {1 - {a^2}} }} + 1} \right)\)

\( = \frac{{3 + \sqrt {1 - a} \cdot \sqrt {1 + a} }}{{\sqrt {1 + a} }}:\frac{{3 + \sqrt {1 - {a^2}} }}{{\sqrt {1 - {a^2}} }}\)

\( = \frac{{3 + \sqrt {1 - {a^2}} }}{{\sqrt {1 + a} }} \cdot \frac{{\sqrt {1 - {a^2}} }}{{3 + \sqrt {1 - {a^2}} }}\)

\( = \frac{{\sqrt {1 - {a^2}} }}{{\sqrt {1 + a} }}\)\( = \frac{{\sqrt {1 - a} \cdot \sqrt {1 + a} }}{{\sqrt {1 + a} }}\)\( = \sqrt {1 - a} \).Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Với \(x > 0\,,\,\,y \ne 0\), ta có:

\[\frac{x}{y}:\sqrt {\frac{{{x^2}}}{{{y^4}}}} = \frac{x}{y}:\sqrt {{{\left( {\frac{x}{{{y^2}}}} \right)}^2}} = \frac{x}{y}:\left| {\frac{x}{{{y^2}}}} \right| = \frac{x}{y}:\frac{x}{{{y^2}}} = \frac{x}{y} \cdot \frac{{{y^2}}}{x} = y.\]

Câu 2

Lời giải

Đáp án đúng là:

Với \(x \ge 0,\) từ \(\sqrt x = 4\) suy ra \({\left( {\sqrt x } \right)^2} = {4^2}\) hay \(x = 16\).

Vậy ta chọn phương án C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP