Câu hỏi:

17/10/2024 296 Lưu

Trong Vật lí, quãng đường \(S\) (tính bằng mét) của một vật rơi tự do được cho bởi công thức\(S = 4,9{t^2}\), trong đó \[t\] là thời gian rơi (tính bằng giây). Thời gian để vật chạm đất nếu được thả rơi tự do từ độ cao 122,5 mét là

A. 3 giây.

B. 4 giây.

C. 5 giây.

D. 6 giây.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Quãng đường vật rơi tự do từ độ cao 122,5 mét đến khi chạm đất là \[S = 122,5\] (mét).

Từ công thức \(S = 4,9{t^2}\), ta có:

\(122,5 = 4,9{t^2}\)

\({t^2} = \frac{{122,5}}{{4,9}}\)

\({t^2} = 25\)

\(t = \sqrt {25} \)

\(t = 5\) (giây)

Vậy sau 5 giây thì vật sẽ chạm đất nếu được thả rơi tự do từ độ cao 122,5 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x - 2024\).

B. \( - x - 2024\).

C. 2024.

D. –2024.

Lời giải

Đáp án đúng là: C

Ta có \(\sqrt {{x^2}} + x - 2024 = \left| x \right| + x - 2024\)

Do \(x < 0\) nên \(\left| x \right| = - x\).

Do đó \(\sqrt {{x^2}} + x - 2024 = - x + x - 2024 = - 2024\).

Vậy với \(x < 0\) thì \(\sqrt {{x^2}} + x - 2024 = - 2024\).

Câu 2

A. \(x \ge 2\).

B. \(x \le 2\).

C. \(x < 2\).

</>

D. \(x > - 2\).

Lời giải

Đáp án đúng là: A

Ta thấy \(x + 2 \ne 0\) khi \(x \ne - 2\) và \(x - 2 \ge 0\) khi \(x \ge 2\).

Do đó, biểu thức \(\frac{x}{{x + 2}} + \sqrt {x - 2} \) xác định khi \(x \ge 2\).

Câu 4

A. \(x < \frac{5}{{12}}\).

B. \(x \le \frac{5}{{12}}\).

C. \(x > \frac{5}{{12}}\).

D. \(x \ge \frac{5}{{12}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 25.

B. 5.

C. –5.

D. 5 và –5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 64.

B. 8.

C. \( - 8.\)

D. 8 và \( - 8.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP