Câu hỏi:

17/10/2024 147

Với \(x \ne 2;\,\,x \ne - 2\), rút gọn biểu thức \(\sqrt {12\left( {x + 2} \right)} \cdot \sqrt {\frac{1}{{6\left( {{x^2} - 4} \right)}}} \) ta được

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Với \(x \ne 2;\,\,x \ne - 2\), ta có \(\sqrt {12\left( {x + 2} \right)} \cdot \sqrt {\frac{1}{{6\left( {{x^2} - 4} \right)}}} \)

\( = \sqrt {12\left( {x + 2} \right) \cdot \frac{1}{{6\left( {{x^2} - 4} \right)}}} \)

\( = \sqrt {\frac{{12\left( {x + 2} \right)}}{{6\left( {x - 2} \right)\left( {x + 2} \right)}}} \)\( = \sqrt {\frac{2}{{x - 2}}} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giá trị biểu thức \(\sqrt {3 - \sqrt 5 } \cdot \sqrt 8 \) là

Xem đáp án » 17/10/2024 355

Câu 2:

Giá trị biểu thức \(\frac{{\sqrt {10} - \sqrt {15} }}{{\sqrt 8 - \sqrt {12} }}\) là

Xem đáp án » 17/10/2024 337

Câu 3:

Với \(a < 0\,,\,\,b > 0\), biểu thức \[ - \frac{1}{3}a{b^3} \cdot \sqrt {\frac{{9{a^2}}}{{{b^6}}}} \] có giá trị là</>

Xem đáp án » 17/10/2024 271

Câu 4:

Với \(a > 0\), biểu thức \[\frac{{\sqrt {{a^6}} }}{{\sqrt {{a^4}} }} - \frac{{\sqrt {{a^3}} }}{{\sqrt a }}\] có giá trị là

Xem đáp án » 17/10/2024 228

Câu 5:

III. Vận dụng

Khi một quả bóng rổ được thả xuống, nó sẽ nảy trở lại, nhưng do tiêu hao năng lượng nên nó không đạt được chiều cao như lúc bắt đầu. Hệ số phục hồi của quả bóng rổ được tính theo công thức

\[{C_R} = \sqrt {\frac{h}{H}} \].

Trong đó \(H\) là độ cao mà quả bóng được thả rơi;

\(h\) là độ cao mà quả bóng bật lại.

Một quả bóng rổ rơi từ độ cao \[3,24{\rm{ m}}\] và bật lại độ cao \[2,25{\rm{ m}}.\] Hệ số phục hồi của quả bóng là

Xem đáp án » 17/10/2024 227

Câu 6:

Giá trị của biểu thức \[\left( {1 + \sqrt {\frac{3}{5}} } \right)\left( {1 - \sqrt {\frac{3}{5}} } \right)\] là \(\frac{a}{b}\). Khi đó tích \(ab\) bằng

Xem đáp án » 17/10/2024 166

Bình luận


Bình luận