Câu hỏi:

20/10/2024 405

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{3\left( {x + 1} \right) - 2\left( {y - 1} \right) = 4}\\{4\left( {x - 2} \right) + 3\left( {y + 1} \right) = 5}\end{array}} \right.\) có nghiệm là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(\left\{ {\begin{array}{*{20}{c}}{3\left( {x + 1} \right) - 2\left( {y - 1} \right) = 4}\\{4\left( {x - 2} \right) + 3\left( {y + 1} \right) = 5}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{c}}{3x + 3 - 2y + 2 = 4}\\{4x - 8 + 3y + 3 = 5}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{c}}{3x - 2y = - 1}\\{4x + 3y = 10}\end{array}} \right..\)

Nhân hai vế phương trình thứ nhất với \(3,\) nhân hai vế phương trình thứ hai với \(2.\) Ta được hệ phương trình mới \(\left\{ {\begin{array}{*{20}{c}}{9x - 6y = - 3}\\{8x + 6y = 20}\end{array}} \right.\)

Cộng từng vế hai phương trình ta được: \(\left( {9x - 6y} \right) + \left( {8x + 6y} \right) = - 3 + 20\)

\(17x = 17\)

\(x = 1.\)

Thế \(x = 1\) vào phương trình thứ nhất ta được: \(3.1 - 2y = - 1\) hay \(y = 2.\)

Vậy hệ phương trình đã cho có duy nhất một nghiệm \(\left( {1;2} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi số sản phẩm phải làm theo kế hoạch của mỗi xí nghiệp lần lượt là \(x;\,y\) (sản phẩm) \(\left( {0 < x,\,y < 300;\,x,\,y \in \mathbb{Z}} \right).\)

Vì theo kế hoạch hai xí nghiệp sản xuất được \(300\) sản phẩm do đó ra có phương trình \(x + y = 300\,\,\,\left( 1 \right)\)

Vì thực tế, xí nghiệp I sản xuất vượt mức \(15\% ,\) xí nghiệp II sản xuất vượt mức \(10\% ,\) cả hai xí nghiệp làm tổng cộng \(336\) sản phẩm do đó, ta có phương trình \(1,15x + 1,1y = 336\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình

\[\left\{ {\begin{array}{*{20}{c}}{x + y = 300}\\{1,15x + 1,1y = 336}\end{array}} \right.\]

\[\left\{ {\begin{array}{*{20}{c}}{x + y = 300}\\{115x + 110y = 33\,\,600}\end{array}} \right.\]

\[\left\{ {\begin{array}{*{20}{c}}{110x + 110y = 33\,\,000}\\{115x + 110y = 33\,\,600}\end{array}} \right.\]

\[\left\{ \begin{array}{l}5x = 600\\x + y = 300\end{array} \right.\]

\[\left\{ {\begin{array}{*{20}{c}}{x = 120}\\{y = 180}\end{array}} \right.\](thỏa mãn)

Vậy theo kế hoạch xí nghiệp II phải làm \(180\) sản phẩm.

 

Câu 2

Lời giải

Đáp án đúng là: A

Vì đồ thị hàm số \(y = {\rm{ax}} + b\) đi qua điểm \(A\left( {2;3} \right)\)nên \(2a + b = 3.\)

Vì đồ thị hàm số \(y = {\rm{ax}} + b\)đi qua điểm \(B\left( {1; - 4} \right)\) nên \( - a + b = - 4.\)

Suy ra \(\left\{ {\begin{array}{*{20}{c}}{2a + b = 3\,\,\,\,\,\,\,\left( 1 \right)}\\{ - a + b = - 4\,\,\,\,\left( 2 \right)}\end{array}} \right.\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra: \(\left( {2a + b} \right) - \left( { - a + b} \right) = 3 - \left( { - 4} \right)\)

\(2a + b + a - b = 7\)

\(3a = 7\)

\(a = \frac{7}{3}\)

Suy ra \(b = \frac{7}{3} - 4 = \frac{{ - 5}}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP