Câu hỏi:

21/10/2024 289

Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\) Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\)

Ta có công thức \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi A là biến cố: “Người đó thực sự mắc bệnh”.

B là biến cố: “Người đó không mắc bệnh”.

C là biến cố: “Kết quả dương tính”.

Theo đề bài, ta có: P(A) = 0,02; P(B) = 0,98; P(C | A) = 0,99; P(C | B) = 0,01 (Do 99% được chuẩn đoán đúng).

Xác suất để kết quả nhận được là dương tính là:

P(C) = P(C | A).P(A) + P(C | B).P(B)

= 0,99.0,02 + 0,01.0,98 = 0,0296.

Xác suất thực sự mắc bệnh khi kết quả dương tính là

P(A | C) = \(\frac{{P\left( {C|A} \right).P\left( A \right)}}{{P\left( C \right)}} = \frac{{0,99.0,02}}{{0,0296}} \approx 0,669.\)

Lời giải

Đáp án đúng là: B

Gọi A là biến cố: “Học sinh là nữ”,

\(\overline A \) là biến cố: “Học sinh là nam”,

B là biến cố: “Học sinh đó tham gia câu lạc bộ nghệ thuật”.

Theo đề bài, ta có: P(A) = 0,53; P(\(\overline A \)) = 1 – 0,53 = 0,47.

P(B | A) = 0,21; P(B | \(\overline A \)) = 0,17.

Áp dụng công thức xác suất toàn phần, ta có:

P(B) = P(B | A).P(A) + P(B | \(\overline A \)).P(\(\overline A \)) = 0,21.0,53 + 0,17.0,47 = 0,1912.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP