Câu hỏi:
21/10/2024 178Một chiếc hộp có 80 chiếc bút bi, trong đó có 50 chiếc bút bi đỏ và 30 chiếc bút bi xanh; các bút bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, ta thấy có 60% số bút bi đỏ có mực và 50% số bút bi xanh có mực, nhưng bút còn lại đều có mực. Lấy ra ngẫu nhiên một chiếc bút bi trong hộp. Xác suất để bút bi lấy ra đã hết mực là bao nhiêu?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Số chiếc bi màu đỏ đã hết mực là 60%.50 = 30.
Số chiếc bút bi màu xanh đã hết mực là 50%.30 = 15.
Gọi A là biến cố “Chiếc bút bi được lấy ra có mực”
B là biến cố “Chiếc bút được lấy ra là bút bi đỏ”,
\(\overline B \) là biến cố “Chiếc bút được lấy ra là bút bi xanh”.
Theo đề bài, ta có: P(B) = \(\frac{{50}}{{80}} = \frac{5}{8}\); P(\(\overline B \)) = \(\frac{{30}}{{80}} = \frac{3}{8}\); P(A | B) = 60% = \(\frac{3}{5}\);
P(A | \(\overline B \)) = 100% − 50% = \(\frac{1}{2}.\)
Vậy P(A) = P(B).P(A | B) + P(\(\overline B \)).P(A | \(\overline B \)) = \(\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} = \frac{9}{{16}}.\)
Ta có: A là biến cố “Chiếc bút bi được lấy ra có mực”
Suy ra \(\overline A \) là biến cố “Chiếc bút bi được lấy ra hết mực”.
Do đó, P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{9}{{16}}\) = \(\frac{7}{{16}}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi A là biến cố: “Người đó thực sự mắc bệnh”.
B là biến cố: “Người đó không mắc bệnh”.
C là biến cố: “Kết quả dương tính”.
Theo đề bài, ta có: P(A) = 0,02; P(B) = 0,98; P(C | A) = 0,99; P(C | B) = 0,01 (Do 99% được chuẩn đoán đúng).
Xác suất để kết quả nhận được là dương tính là:
P(C) = P(C | A).P(A) + P(C | B).P(B)
= 0,99.0,02 + 0,01.0,98 = 0,0296.
Xác suất thực sự mắc bệnh khi kết quả dương tính là
P(A | C) = \(\frac{{P\left( {C|A} \right).P\left( A \right)}}{{P\left( C \right)}} = \frac{{0,99.0,02}}{{0,0296}} \approx 0,669.\)
Lời giải
Đáp án đúng là: B
Gọi A là biến cố: “Học sinh là nữ”,
\(\overline A \) là biến cố: “Học sinh là nam”,
B là biến cố: “Học sinh đó tham gia câu lạc bộ nghệ thuật”.
Theo đề bài, ta có: P(A) = 0,53; P(\(\overline A \)) = 1 – 0,53 = 0,47.
P(B | A) = 0,21; P(B | \(\overline A \)) = 0,17.
Áp dụng công thức xác suất toàn phần, ta có:
P(B) = P(B | A).P(A) + P(B | \(\overline A \)).P(\(\overline A \)) = 0,21.0,53 + 0,17.0,47 = 0,1912.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.