Câu hỏi:

23/10/2024 491 Lưu

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để giá trị nhỏ nhất của hàm số \(y = f(x) = 4{x^2} - 4mx + {m^2} - 2m\) trên đoạn \([ - 2;0]\) bằng 3 . Tính tổng \(T\) các phần tử của \(S\).

A. \(T =  - \frac{3}{2}\).                                    
B. \(T = \frac{1}{2}\).                    
C. \(T = \frac{9}{2}\).   
D. \(T = \frac{3}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Parabol có hệ số theo \({x^2}\) là \(4 > 0\) nên bề lõm hướng lên. Hoành độ đỉnh \({x_I} = \frac{m}{2}\).

Nếu \(\frac{m}{2} <  - 2 \Leftrightarrow m <  - 4\) thì \({x_I} <  - 2 < 0\). Suy ra \(f(x)\) đồng biến trên đoạn \([ - 2;0]\).

Do đó \(\mathop {\min }\limits_{[ - 2;0]} f(x) = f( - 2) = {m^2} + 6m + 16\).

Theo yêu cầu bài toán: \({m^2} + 6m + 16 = 3\) (vô nghiệm).

Nếu \( - 2 \le \frac{m}{2} \le 0 \Leftrightarrow  - 4 \le m \le 0\) thì \({x_I} \in [0;2]\).

Suy ra \(f(x)\) đạt giá trị nhỏ nhất tại đỉnh. Do đó \(\mathop {\min }\limits_{[ - 2;0]} f(x) = f\left( {\frac{m}{2}} \right) =  - 2m\).

Theo yêu cầu bài toán \( - 2m = 3 \Leftrightarrow m =  - \frac{3}{2}\) (thỏa mãn \( - 4 \le m \le 0\) ).

Nếu \(\frac{m}{2} > 0 \Leftrightarrow m > 0\) thì \({x_I} > 0 >  - 2\). Suy ra \(f(x)\) nghịch biến trên đoạn \([ - 2;0]\).

Do đó \(\mathop {\min }\limits_{[ - 2;0]} f(x) = f(0) = {m^2} - 2m\).

Theo yêu cầu bài toán: \({m^2} - 2m = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m =  - 1\,\,\,\left( l \right){\rm{ }}}\\{m = 3\quad \left( {tm} \right){\rm{ }}}\end{array}} \right.\)

Vậy tổng giá trị của m là \(\frac{3}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. m ≤ −4.                    
B. m < −4.                    
C. m > 0.    
D. m < 4.

Lời giải

Lời giải

Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm

Hay Δ′ = m + 4 < 0 ⇔ m < −4.

Lời giải

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{(x - 2)(2x - 1)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{2x - 1}} = \frac{1}{3}\)

Câu 6

A. lim un = −1.             
B. lim un = 0.                
C. lim un = \(\frac{1}{2}\).                
D. lim un = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP