Câu hỏi:

23/10/2024 426 Lưu

Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi động viên còn lại. Cho biết có 2 vận động viên nữ và cho biết số ván các vận động viên chơi nam chơi với nhau hơn số ván họ chơi với hai vận động viên nữ là 84. Hỏi số ván tất cả các vận động viên đã chơi?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số vận động viên nam là n.

Số ván các vận động viên nam chơi với nhau là \(2.C_n^2 = n(n - 1)\)

Số ván các vận động viên nam chơi với các vận động viên nữ là 2.2.n = 4n

Vậy ta có \(n(n - 1) - 4n = 84 \Rightarrow n = 12\)

Số vận động viên nam và nữ là 14.

Vậy số ván các vận động viên chơi là \(2C_{14}^2 = 182\). 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm

Hay Δ′ = m + 4 < 0 ⇔ m < −4.

Lời giải

 

ĐÚNG

SAI

Chiếc thùng nhận được là hình chóp cụt

¤

¡

Cạnh bên của chiếc thùng là 3 dm

¡

¤

Thùng có thể chứa được nhiều nhất 42 lít nước

¤

¡

Phương pháp giải

b) Cạnh bên của chiếc thùng là độ dài cạnh DD’

Kẻ DQ vuông góc với D’C’

c) Số lít nước mà thùng có thể chứa được nhiều nhất bằng thể tích của hình chóp cụt.

Gọi O và O’ lần lượt là tâm của ABCD và A’B’C’D’

Qua D kẻ DH vuông góc với O’D’

Đáy A’B’C’D’ có cạnh là 6dm

Tính:

O′D′

OD

Lời giải

a) Chiếc thùng nhận được là hình chóp cụt

AB//A'B'

=>AB//(A'B'C'D')

AD//A'D'

=>AD//(A'B'C'D')

=>(A'B'C'D')//(ABCD)

=>Chiếc thùng có dạng hình chóp cụt vì khi bác Hùng cắt bỏ bốn phần như nhau ở bốn góc của tấm tôn vuông, sẽ tạo thành bốn tam giác vuông cân

b) Cạnh bên của chiếc thùng là độ dài cạnh DD’

Media VietJack

Kẻ DQ vuông góc với D’C’

Khi đó DQ=2,5dm và D’Q=1,5dm

\(D'{D^2} = D{Q^2} + D'{Q^2} = \frac{{17}}{2} \Rightarrow DD' = \frac{{\sqrt {34} }}{2}\)dm

c) Số lít nước mà thùng có thể chứa được nhiều nhất bằng thể tích của hình chóp cụt.

Media VietJack

Gọi O và O’ lần lượt là tâm của ABCD và A’B’C’D’

Qua D kẻ DH vuông góc với O’D’

Đáy A’B’C’D’ có cạnh là 6dm

\(O'D' = \frac{6}{{\sqrt 2 }} = 3\sqrt 2 \,\,({\rm{dm}})\)

\(OD = \frac{3}{{\sqrt 2 }} = \frac{{3\sqrt 2 }}{2}\,\,({\rm{dm}})\)

Xét mặt chứa đường chéo của hình vuông, nó là hình thang cân có chiều cao bằng chiều cao của hình chóp cụt và được \(h = \sqrt {D'{D^2} - D'{H^2}}  = \sqrt {\frac{{17}}{2} - {{\left( {3\sqrt 2  - \frac{{3\sqrt 2 }}{2}} \right)}^2}}  = 2\,\,(dm)\)

Thể tích cần tìm là \(V = \frac{1}{3}.2.\left( {{3^2} + {6^2} + 3.6} \right) = 42\) lít.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP