Câu hỏi:

23/10/2024 158

Cho khai triển \({\left( {\frac{1}{{\sqrt 2 }} + 3} \right)^n}.\)

Khẳng định nào đúng trong các khẳng định sau?

Số các số hạng trong khai triển là n + 1

Với n = 4 thì có 4 số hạng hữu tỉ

Số nguyên lẻ trong khai triển là 3n

Tỉ số giữa số hạng thứ tư và thứ ba bằng \(3\sqrt 2 \) thì n = 6

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số các số hạng trong khai triển là n + 1 - ĐÚNG

Với n = 4 thì có 4 số hạng hữu tỉ

Số nguyên lẻ trong khai triển là 3n - ĐÚNG

Tỉ số giữa số hạng thứ tư và thứ ba bằng \(3\sqrt 2 \) thì n = 6

Phương pháp giải

Xét từng mệnh đề.

Lời giải

a) Số các số hạng trong khai triển là n + 1

b) Với n = 4 thì \({\left( {\frac{1}{{\sqrt 2 }} + 3} \right)^4} = \sum\limits_{k = 0}^4 {C_4^k} {.3^k}.{\left( {{2^{\frac{{ - 1}}{2}}}} \right)^{4 - k}}\)

\( = \sum\limits_{k = 0}^4 {C_4^k} {.3^k}{.2^{\frac{{k - 4}}{2}}}\)

Số hạng hữu tỉ khi và chỉ khi \(\frac{{k - 4}}{2} \in \mathbb{Z}\) mà \( - 4 \le k - 4 \le 0\)

\( \Rightarrow k - 4 \in \{ 0; - 2; - 4\}  \Leftrightarrow k \in \{ 0;2;4\} \)

Vậy có 3 số hạng hữu tỉ.

c) Số nguyên duy nhất trong khai triển nhị thức là 3n và đây là một số lẻ.

d) Ta có \({\left( {\frac{1}{{\sqrt 2 }} + 3} \right)^n} = {\left( {3 + {2^{\frac{{ - 1}}{2}}}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k} {.3^k}.{\left( {{2^{\frac{{ - 1}}{2}}}} \right)^{n - k}}\)

Bài ra thì \(\frac{{C_n^4{{.3}^4}.{{\left( {{2^{\frac{{ - 1}}{2}}}} \right)}^{n - 4}}}}{{C_n^3{{.3}^3}.{{\left( {{2^{\frac{{ - 1}}{2}}}} \right)}^{n - 3}}}} = 3\sqrt 2  \Rightarrow \frac{{\frac{{3.n!}}{{(n - 4)!.4!}}}}{{\frac{{n!}}{{(n - 3)!.3!}}}}.{\left( {{2^{\frac{{ - 1}}{2}}}} \right)^{ - 1}} = 3\sqrt 2 \)

\( \Rightarrow \frac{{3(n - 3)}}{4}.\sqrt 2  = 3\sqrt 2  \Rightarrow n = 7\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với giá trị nào của m thì hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\).

Xem đáp án » 23/10/2024 6,431

Câu 2:

Tính các giới hạn sau \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}}\)

Xem đáp án » 23/10/2024 1,538

Câu 3:

Từ một tấm tôn hình vuông có cạnh 8 dm, bán Hùng cắt bỏ bốn phần như nhau ở bốn góc, sau đó bác hàn các mép lại để được một chiếc thùng (không nắp) như hình bên dưới

Media VietJack

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Chiếc thùng nhận được là hình chóp cụt

¡

¡

Cạnh bên của chiếc thùng là 3 dm

¡

¡

Thùng có thể chứa được nhiều nhất 42 lít nước

¡

¡

Xem đáp án » 23/10/2024 1,329

Câu 4:

Cho cấp số cộng (un) có u1 = 3 và công sai d = 2, và cấp số cộng (vn) có v1 = 2 và công sai d′ = 3. Gọi X, Y là tập hợp chứa 1000 số hạng đầu tiên của mỗi cấp số cộng. Chọn ngẫu nhiên 2 phần tử bất kỳ trong tập hợp X ∪ Y. Xác suất để chọn được 2 phần tử bằng nhau gần với số nào nhất trong các số dưới đây?

Xem đáp án » 23/10/2024 1,317

Câu 5:

Truyện được kể theo ngôi kể nào?

Truyện được kể theo _______

Xem đáp án » 13/07/2024 1,176

Câu 6:

Cho dãy số có giới hạn \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = \frac{1}{{2 - {u_n}}},n \ge 1}\end{array}} \right.\). Tính lim un.

Xem đáp án » 23/10/2024 1,127

Câu 7:

Dẫn nhiệt có thể xảy ra trong môi trường nào:

Xem đáp án » 29/06/2024 1,041

Bình luận


Bình luận