Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ {\begin{array}{*{20}{l}}{{u_1} = 1}\\{{u_{n + 1}} = {u_n} + {{( - 1)}^{2n}}}\end{array}} \right.\) . Số hạng tổng quát \({u_n}\) của dãy số là số hạng nào dưới đây?
Quảng cáo
Trả lời:
Lời giải
Ta có: \({u_{n + 1}} = {u_n} + {( - 1)^{2n}} = {u_n} + 1 \Rightarrow {u_2} = 2;{u_3} = 3;{u_4} = 4; \ldots \) Dễ dàng dự đoán được \({u_n} = n\).
Thật vậy, ta chứng minh được \({u_n} = n\,\,(*)\) bằng phương pháp quy nạp như sau:
+ Với \(n = 1 \Rightarrow {u_1} = 1\). Vậy (*) đúng với \(n = 1\)
+ Giả sử (*) đúng với mọi \(n = k\left( {k \in {\mathbb{N}^*}} \right)\), ta có: \({u_k} = k\). Ta đi chứng minh (*) cũng đúng với \(n = k + 1\), tức là: \({u_{k + 1}} = k + 1\)
+ Thật vậy, từ hệ thức xác định dãy số \(\left( {{u_n}} \right)\) ta có: \({u_{k + 1}} = {u_k} + {( - 1)^{2k}} = k + 1\). Vậy \((*)\) đúng với mọi \(n \in {\mathbb{N}^*}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm
Hay Δ′ = m + 4 < 0 ⇔ m < −4.
Câu 2
Tính các giới hạn sau \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}}\)
Lời giải
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{|2 - x|}}{{2{x^2} - 5x + 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{(x - 2)(2x - 1)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{2x - 1}} = \frac{1}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

