Tập hợp tất cả các giá trị thực của tham số \(m\) để bất phương trình \({\rm{lo}}{{\rm{g}}_4}\left( {{x^2} - x - m} \right) \ge {\rm{lo}}{{\rm{g}}_2}\left( {x - 2} \right)\) có nghiệm với mọi giá trị \(x\) thuộc tập xác định là
Quảng cáo
Trả lời:
Giải thích
Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{{x^2} - x - m > 0}\\{x - 2 > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} - x - m > 0}\\{x > 2}\end{array}} \right.} \right.\)
Với điều kiện trên bất phương trình đã cho tương đương với
\({\rm{lo}}{{\rm{g}}_4}\left( {{x^2} - x - m} \right) \ge {\rm{lo}}{{\rm{g}}_2}\left( {x - 2} \right) \Leftrightarrow {\rm{lo}}{{\rm{g}}_2}\left( {{x^2} - x - m} \right) \ge {\rm{lo}}{{\rm{g}}_2}{(x - 2)^2}\)
\( \Leftrightarrow {x^2} - x - m \ge {x^2} - 4x + 4 \Leftrightarrow m \le 3x - 4\left( {{\rm{**}}} \right)\).
Khi đó, \({x^2} - x - m > 0 \Leftrightarrow {x^2} - x - m \ge {x^2} - x - 3x + 4 = {x^2} - 4x + 4 = {(x - 2)^2} > 0\) (vì \(x > 2\)).
Vậy bất phương trình đã cho có nghiệm với mọi giá trị \(x\) thuộc tập xác định khi \(\left( {{\rm{**}}} \right)\) có nghiệm với mọi giá trị \(x\) thuộc tập xác định \( \Leftrightarrow m \le \mathop {{\rm{min}}}\limits_{\left( {2; + \infty } \right)} \left( {3x - 4} \right) \Rightarrow m \le 2\).
Chọn D
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Mệnh đề |
Đúng |
Sai |
1) Đồ thị hàm số có một tiệm cận ngang là \(y = - 1\). |
X | |
2) Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2. |
X |
Giải thích
Lí do lựa chọn phương án |
1 |
Đúng vì: Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x + 2}}{{1 - {x^2}}} = - 1\) nên đồ thị hàm số có một tiệm cận ngang \(y = - 1\). |
2 |
Đúng vì: Ta có: \(\mathop {\lim }\limits_{x \to 1} y = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{1 - {x^2}}} = \mathop {\lim }\limits_{x \to 1} \frac{{2 - x}}{{x + 1}} = \frac{1}{2}\) nên \(x = 1\) không là tiệm cận đứng của đồ thị hàm số. \(\mathop {\lim }\limits_{x \to {{( - 1)}^ + }} y = \mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \frac{{{x^2} - 3x + 2}}{{1 - {x^2}}} = \mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \frac{{2 - x}}{{x + 1}} = + \infty {\rm{. }}\) Khi đó, đồ thị hàm số có một tiệm cận đứng \(x = - 1\). |
Lời giải
Đáp án
Phát biểu |
Đúng |
Sai |
Diện tích khu đất lớn nhất khi độ dài hàng rào \(AD\) là 125 mét. |
X | |
Diện tích khu đất lớn nhất khi chi phí nguyên vật liệu làm hàng rào \(AB\) là 7 triệu đồng. |
X | |
Diện tích khu đất lớn nhất bằng \(5200{\rm{\;}}{{\rm{m}}^2}\). |
X |
Giải thích

Gọi chiều rộng của hình chữ nhật là \(x\left( m \right){\rm{\;}}(x > 0)\) và chiều dài của phần đất trồng rau và nuôi gà lần lượt là \(a\left( m \right),b\left( m \right){\rm{\;}}(a > 0;b > 0)\).
Khi đó diện tích của khu đất là \(S = \left( {a + b} \right)x\left( {{m^2}} \right)\).
Mặt khác theo giả thiết tổng chi phí là 20 triệu đồng nên ta có:
\(3x.40000 + \left( {a + b} \right)80000 = 20000000 \Leftrightarrow 3x + 2\left( {a + b} \right) = 500\).
Ta có \(6S = 3x.2\left( {a + b} \right) \le \frac{{{{[3x + 2\left( {a + b} \right)]}^2}}}{4} = \frac{{{{500}^2}}}{4} \Rightarrow S \le \frac{{31250}}{3}\).
\( \Rightarrow {{\rm{S}}_{{\rm{max}}}} = \frac{{31250}}{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a + b = 125}\\{x = \frac{{250}}{3}\,\,\,}\end{array}} \right.\)
\( \Rightarrow \) Chi phí nguyên vật liệu làm hàng rào \(AB\) là: \(125.80000 = 10000000\) (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.