Cho hình chóp \(S.ABCD\) có tọa độ các điểm \(A\left( { - 2;2;6} \right),B\left( { - 3;1;8} \right),C\left( { - 1;0;7} \right),D\left( {1;2;3} \right)\). Gọi \(H\) là trung điểm của \(CD\) và \(SH\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Biết \(S\left( {a;b;c} \right)\) (với \(a,b,c\) là các giá trị dương) là điểm thỏa mãn thể tích khối chóp \(S.ABCD\) bằng \(\frac{{27}}{2}\) (đvtt). Tổng giá trị của \(a + b + c\) bằng
Quảng cáo
Trả lời:
Giải thích
Ta có:
\(\overrightarrow {AB} = \left( { - 1; - 1;2} \right),\overrightarrow {AC} = \left( {1; - 2;1} \right) \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {3;3;3} \right) \Rightarrow {S_{ABC}} = \frac{1}{2}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right| = \frac{{3\sqrt 3 }}{2}\)
Lại có: \(\overrightarrow {DC} = \left( { - 2; - 2;4} \right),\overrightarrow {AB} = \left( { - 1; - 1;2} \right) \Rightarrow \overrightarrow {DC} = 2\overrightarrow {AB} \)
\( \Rightarrow ABCD\) là hình thang và \({S_{ABCD}} = 3{S_{ABC}} = \frac{{9\sqrt 3 }}{2}\).
Vì \({V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}} \Rightarrow SH = 3\sqrt 3 \)
Lại có \(H\) là trung điểm của \(CD \Rightarrow H\left( {0;1;5} \right)\)
Gọi \(S\left( {a;b;c} \right) \Rightarrow \overrightarrow {SH} = \left( { - a;1 - b;5 - c} \right) \Rightarrow \overrightarrow {SH} = k\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = k\left( {3;3;3} \right) = \left( {3k;3k;3k} \right)\)
Suy ra \(3\sqrt 3 = \sqrt {9{k^2} + 9{k^2} + 9{k^2}} \Rightarrow k = \pm 1\)
+) Với \(k = 1 \Rightarrow \overrightarrow {SH} = \left( {3;3;3} \right) \Rightarrow {S_1}\left( { - 3; - 2;2} \right)\)
+) Với \(k = - 1 \Rightarrow \overrightarrow {SH} = \left( { - 3; - 3; - 3} \right) \Rightarrow {S_2}\left( {3;4;8} \right)\)
\( \Rightarrow a = 3;b = 4;c = 8 \Rightarrow a + b - c = - 1\).
Chọn C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Phát biểu |
Đúng |
Sai |
Diện tích khu đất lớn nhất khi độ dài hàng rào \(AD\) là 125 mét. |
X | |
Diện tích khu đất lớn nhất khi chi phí nguyên vật liệu làm hàng rào \(AB\) là 7 triệu đồng. |
X | |
Diện tích khu đất lớn nhất bằng \(5200{\rm{\;}}{{\rm{m}}^2}\). |
X |
Giải thích

Gọi chiều rộng của hình chữ nhật là \(x\left( m \right){\rm{\;}}(x > 0)\) và chiều dài của phần đất trồng rau và nuôi gà lần lượt là \(a\left( m \right),b\left( m \right){\rm{\;}}(a > 0;b > 0)\).
Khi đó diện tích của khu đất là \(S = \left( {a + b} \right)x\left( {{m^2}} \right)\).
Mặt khác theo giả thiết tổng chi phí là 20 triệu đồng nên ta có:
\(3x.40000 + \left( {a + b} \right)80000 = 20000000 \Leftrightarrow 3x + 2\left( {a + b} \right) = 500\).
Ta có \(6S = 3x.2\left( {a + b} \right) \le \frac{{{{[3x + 2\left( {a + b} \right)]}^2}}}{4} = \frac{{{{500}^2}}}{4} \Rightarrow S \le \frac{{31250}}{3}\).
\( \Rightarrow {{\rm{S}}_{{\rm{max}}}} = \frac{{31250}}{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a + b = 125}\\{x = \frac{{250}}{3}\,\,\,}\end{array}} \right.\)
\( \Rightarrow \) Chi phí nguyên vật liệu làm hàng rào \(AB\) là: \(125.80000 = 10000000\) (đồng).
Lời giải
Đáp án
Phát biểu |
Đúng |
Sai |
Điểm \(I\) nằm trên mặt phẳng \(\left( {ABC} \right)\). |
X | |
\(R = \frac{{a\sqrt 3 }}{3}\). |
X |
Giải thích

Gọi \(M,N\) lần lượt là trung điểm của \(AB,AC;I\) là giao điểm của hai đường trung trực của hai đoạn thẳng \(AB\) và \(AC\).
Do \(M\) là trung điểm của cạnh huyền trong tam giác vuông \(AHB\) nên \(MA = MB = MH\).
Có \(SA \bot \left( {ABC} \right)\) nên \(SA \bot MI\), mà \(MI \bot AB,AB \cap SA = A\) nên \(MI \bot \left( {SAB} \right)\). Do đó \(IA = IB = IH\).
Hoàn toàn tương tự, ta cũng chỉ ra được \(IA = IC = IK\).
Do đó \(I\) là tâm mặt cầu ngoại tiếp của hình chóp \(A.BCHK\).
Bán kính của mặt cầu này là \(AI = \frac{{a\sqrt 3 }}{3}\) (do tam giác \(ABC\) đều cạnh \(a\)).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.