Gọi \(E\) là tập hợp tất cả các số nguyên dương \(y\) sao cho ứng với mỗi số \(y\) có không quá 4031 số nguyên \(x\) thỏa mãn \({\rm{log}}_2^2x - 3y{\rm{lo}}{{\rm{g}}_2}x + 2{y^2} < 0\). Tập \(E\) có bao nhiêu phần tử?
Quảng cáo
Trả lời:
Giải thích
Điều kiện \(x > 0\).
Đặt \(t = {\rm{lo}}{{\rm{g}}_2}x\), bất phương trình trở thành \({t^2} - 3yt + 2{y^2} < 0\,\,\left( * \right)\).
\({\rm{\Delta }} = {(3y)^2} - 4.2{y^2} = {y^2} > 0,\forall y \in {\mathbb{Z}^ + }\), tam thức có hai nghiệm \(\left[ {\begin{array}{*{20}{l}}{t = y}\\{t = 2y}\end{array}} \right.\).
Do đó \(\left( * \right) \Leftrightarrow y < t < 2y\) hay \(y < {\rm{lo}}{{\rm{g}}_2}x < 2y \Leftrightarrow {2^y} < x < {2^{2y}}\).
Vì \(x,y \in {\mathbb{Z}^ + }\)nên \(x \in A = \left\{ {{2^y} + 1;{2^y} + 2; \ldots ;{2^{2y}} - 1} \right\}\).
Số phần tử của tập \(A\) là \(\left( {{2^{2y}} - 1} \right) - \left( {{2^y} + 1} \right) + 1 = {2^{2y}} - {2^y} - 1\).
Giả thiết bài toán có không quá 4031 số nguyên \(x\) nên ta có. \({2^{2y}} - {2^y} - 1 \le 4031\)
\( \Leftrightarrow {2^{2y}} - {2^y} - 4032 \le 0 \Leftrightarrow - 63 \le {2^y} \le 64 \Leftrightarrow y \le 6\).
Vì \(y \in {\mathbb{Z}^ + }\)nên \(y \in E = \left\{ {1;2;3;4;5;6} \right\}\).
Số phần tử của tập hợp \(E\) là 6 .
Chọn A
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Phát biểu |
Đúng |
Sai |
Diện tích khu đất lớn nhất khi độ dài hàng rào \(AD\) là 125 mét. |
X | |
Diện tích khu đất lớn nhất khi chi phí nguyên vật liệu làm hàng rào \(AB\) là 7 triệu đồng. |
X | |
Diện tích khu đất lớn nhất bằng \(5200{\rm{\;}}{{\rm{m}}^2}\). |
X |
Giải thích

Gọi chiều rộng của hình chữ nhật là \(x\left( m \right){\rm{\;}}(x > 0)\) và chiều dài của phần đất trồng rau và nuôi gà lần lượt là \(a\left( m \right),b\left( m \right){\rm{\;}}(a > 0;b > 0)\).
Khi đó diện tích của khu đất là \(S = \left( {a + b} \right)x\left( {{m^2}} \right)\).
Mặt khác theo giả thiết tổng chi phí là 20 triệu đồng nên ta có:
\(3x.40000 + \left( {a + b} \right)80000 = 20000000 \Leftrightarrow 3x + 2\left( {a + b} \right) = 500\).
Ta có \(6S = 3x.2\left( {a + b} \right) \le \frac{{{{[3x + 2\left( {a + b} \right)]}^2}}}{4} = \frac{{{{500}^2}}}{4} \Rightarrow S \le \frac{{31250}}{3}\).
\( \Rightarrow {{\rm{S}}_{{\rm{max}}}} = \frac{{31250}}{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a + b = 125}\\{x = \frac{{250}}{3}\,\,\,}\end{array}} \right.\)
\( \Rightarrow \) Chi phí nguyên vật liệu làm hàng rào \(AB\) là: \(125.80000 = 10000000\) (đồng).
Lời giải
Đáp án
Phát biểu |
Đúng |
Sai |
Điểm \(I\) nằm trên mặt phẳng \(\left( {ABC} \right)\). |
X | |
\(R = \frac{{a\sqrt 3 }}{3}\). |
X |
Giải thích

Gọi \(M,N\) lần lượt là trung điểm của \(AB,AC;I\) là giao điểm của hai đường trung trực của hai đoạn thẳng \(AB\) và \(AC\).
Do \(M\) là trung điểm của cạnh huyền trong tam giác vuông \(AHB\) nên \(MA = MB = MH\).
Có \(SA \bot \left( {ABC} \right)\) nên \(SA \bot MI\), mà \(MI \bot AB,AB \cap SA = A\) nên \(MI \bot \left( {SAB} \right)\). Do đó \(IA = IB = IH\).
Hoàn toàn tương tự, ta cũng chỉ ra được \(IA = IC = IK\).
Do đó \(I\) là tâm mặt cầu ngoại tiếp của hình chóp \(A.BCHK\).
Bán kính của mặt cầu này là \(AI = \frac{{a\sqrt 3 }}{3}\) (do tam giác \(ABC\) đều cạnh \(a\)).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.