Câu hỏi:

07/11/2024 277

Gọi \({x_1};\,{x_2}\) là nghiệm của phương trình \( - 2{x^2} - ax - 1 = 0.\) Giá trị của biểu thức \(N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}}\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Phương trình \( - 2{x^2} - 6x - 1 = 0\) có \(\Delta = {\left( { - 6} \right)^2} - 4.\left( { - 2} \right).\left( { - 1} \right) = 28 > 0\) nên phương trình có hai nghiệm \({x_1};\,{x_2}\)

Theo định lí Viète ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 3\\{x_1}{x_2} = \frac{1}{2}\end{array} \right.\)

Ta có \(N = \frac{1}{{{x_1} + 3}} + \frac{1}{{{x_2} + 3}} = \frac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \frac{{ - 3 + 6}}{{\frac{1}{2} + 3.\left( { - 3} \right) + 9}} = 6.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Theo định lí Viète, ta có: \[{x_1} + {x_2} = 3;\,\,\,{x_1}{x_2} = 2.\]

Câu 2

Lời giải

Đáp án đúng là: B

Định lí Viète: Nếu \({x_1};\,{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) thì \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP