Câu hỏi:

12/11/2024 1,670

III. Vận dụng

Cho đường tròn \[\left( {O;R} \right)\] và điểm \[A\] nằm ngoài \[\left( O \right).\] Từ \[A\] kẻ hai tiếp tuyến \[AB,AC\] với đường tròn \[\left( O \right)\] (hai điểm \[B,C\] là các tiếp điểm). Gọi \[H\] là giao điểm của \[OA\] và \[BC.\] Lấy \[D\] đối xứng với \[B\] qua \[O.\] Gọi \[E\] là giao điểm của đoạn thẳng \[AD\] với đường tròn \[\left( O \right)\] (điểm \[E\] khác điểm \[D\]) . Tỉ số \[\frac{{DE}}{{BE}}\] bằng

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho đường tròn  ( O ; R )  và điểm  A  nằm ngoài  ( O ) .  Từ  A  kẻ hai tiếp tuyến  A B , A C  với đường tròn  ( O )  (hai điểm  B , C  là các tiếp điểm). Gọi  H  là giao điểm của  O A  và  B C .  Lấy  D  đối xứng với  B  qua  O (ảnh 1)

Ta có \[D\] đối xứng với \[B\] qua \[O.\] Suy ra \[O\] là trung điểm \[BD.\] Do đó \[BD\] là đường kính của đường tròn \[\left( O \right).\]

Tam giác \[BED\] có \[EO\] là đường trung tuyến và \[EO = \frac{{BD}}{2}\] nên tam giác \[BED\] vuông tại \[E.\]

Ta có \[AB\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \(B\) nên \[AB \bot BD.\]

Xét \[\Delta BED\] và \[\Delta ABD,\] có:

\[\widehat {BED} = \widehat {ABD} = 90^\circ \] và \[\widehat {BDE}\] là góc chung.

Do đó (g.g)

Suy ra \[\frac{{DE}}{{DB}} = \frac{{BE}}{{AB}}\] hay \[\frac{{DE}}{{BE}} = \frac{{DB}}{{AB}}.\]

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?

Xem đáp án » 12/11/2024 725

Câu 2:

Cho đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}\] và một điểm \[A\] cách \[O\] là \[7{\rm{\;cm}}.\] Kẻ tiếp tuyến \[AB\] với đường tròn (điểm \[B\] là tiếp điểm). Khi đó độ dài \[AB\] là

Xem đáp án » 12/11/2024 592

Câu 3:

Cho đường tròn \[\left( O \right),\] bán kính \[R = OA,\] dây \[CD\] là đường trung trực của \[OA.\] Kẻ tiếp tuyến với đường tròn tại \[C,\] tiếp tuyến này cắt đường thẳng \[OA\] tại \[I.\] Cho các khẳng định sau:

(i) Tứ giác \[CODA\] là hình thoi.

(ii) \[CI = R\sqrt 3 .\]

Kết luận nào sau đây đúng nhất?

Xem đáp án » 12/11/2024 489

Câu 4:

Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = 1,2R.\] Vẽ một tiếp tuyến song song với \[AB,\] cắt các tia \[OA,OB\] lần lượt tại \[E\] và \[F.\] Diện tích tam giác \[OEF\] theo \[R\] là

Xem đáp án » 12/11/2024 336

Câu 5:

Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH < R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\]

Xem đáp án » 12/11/2024 298

Câu 6:

Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng

Xem đáp án » 12/11/2024 250

Bình luận


Bình luận