Câu hỏi:

12/11/2024 552 Lưu

Cho đường tròn \[\left( O \right)\] bán kính \[OA.\] Từ trung điểm \[M\] của \[OA\] vẽ dây \[BC \bot OA.\] Biết độ dài đường tròn \[\left( O \right)\] là \[4\pi {\rm{\;cm}}.\] Độ dài cung lớn \[BC\] là

A. \[\frac{{4\pi }}{3}{\rm{\;cm}}.\]

B. \[\frac{{5\pi }}{3}{\rm{\;cm}}.\]
C. \[\frac{{7\pi }}{3}{\rm{\;cm}}.\]
D. \[\frac{{8\pi }}{3}{\rm{\;cm}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho đường tròn  ( O )  bán kính  O A .  Từ trung điểm  M  của  O A  vẽ dây  B C ⊥ O A .  Biết độ dài đường tròn  ( O )  là  4 π c m .  Độ dài cung lớn  B C  là (ảnh 1)

Ta có \(BC \bot OA\) tại trung điểm \[M\] của \[OA\] nên \(BC\) là đường trung trực của đoạn thẳng \(OA.\)

Do đó \[OB = AB.\]

Mà \[OA = OB\] nên \[OA = OB = AB.\] Suy ra tam giác \[OAB\] là tam giác đều.

Do đó \[\widehat {AOB} = 60^\circ .\]

Chứng minh tương tự, ta được \[\widehat {AOC} = 60^\circ .\]

Ta có

Khi đó số đo cung lớn \[BC\] bằng

Độ dài cung lớn \[BC\] là: \[l = \frac{n}{{360}}C = \frac{{240}}{{360}} \cdot 4\pi = \frac{{8\pi }}{3}{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho đường tròn tâm  O  và điểm  A  nằm ngoài đường tròn. Từ  A  kẻ hai tiếp tiếp tuyến  A B  và  A C  của đường tròn tâm  O  (điểm  B , C  là tiếp điểm). Nếu  ˆ B A C = 90 ∘  thì tam giác  A B O  là (ảnh 1)

Vì \(AB\) và \(AC\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) cắt nhau tại \(A\) nên \(AO\) là tia phân giác của \(\widehat {BAC}.\) Do đó \[\widehat {BAO} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\]

Do \(AB\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại \(B\) nên \(AB \bot OB\).

Khi đó \(\Delta ABO\) vuông tại \(B\) có \[\widehat {BAO} = 45^\circ \] nên là tam giác vuông cân tại \(B\).

Lời giải

Đáp án đúng là: A

Cho hình chữ nhật  A B C D  có  A D = 8 c m , A B = 15 c m .  Biết rằng bốn điểm  A , B , C , D  cùng thuộc một đường tròn. Bán kính của đường tròn đó bằng (ảnh 1)

Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD\] của hình chữ nhật \[ABCD.\] Suy ra \[O\] là trung điểm của \[AC\] và \[BD.\]

Do đó \[OA = OC\] và \[OB = OD.\]

Mà \[AC = BD\] (do \[AC\] và \[BD\] là hai đường chéo của hình chữ nhật \[ABCD\]).

Suy ra \[OA = OC = OB = OD.\]

Như vậy bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn tâm \[O\] bán kính \[OB.\]

Áp dụng định lí Pythagore cho tam giác \[ABD\] vuông tại \[A,\] ta được:

\[B{D^2} = A{B^2} + A{D^2} = {15^2} + {8^2} = 289.\] Suy ra \[BD = 17{\rm{\;(cm)}}{\rm{.}}\]

Vì \[O\] là trung điểm của \[BD\] nên \[OB = \frac{{BD}}{2} = \frac{{17}}{2} = 8,5{\rm{\;(cm)}}{\rm{.}}\]

Do đó bán kính đường tròn cần tìm là \[OB = 8,5{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[5\pi {\rm{\;c}}{{\rm{m}}^2}.\]

B. \[3\pi {\rm{\;c}}{{\rm{m}}^2}.\]
C. \[1,5\pi {\rm{\;c}}{{\rm{m}}^2}.\]
D. \[2\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP