Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = R.\] Trên tia đối của tia \[BA\] lấy điểm \[C\] sao cho \[BC = BA.\] Kéo dài \[CO\] cắt đường tròn \[\left( O \right)\] lần lượt tại \[D,E\] (\[D\] nằm giữa \[C,O\]). Kết luận nào sau đây là sai?
A. \[\widehat {AOD} = 3\widehat {ACD}.\]
B.
C.
D. \[\widehat {ACD} = 30^\circ .\]
Quảng cáo
Trả lời:

Đáp án đúng là: B
⦁ Xét \[\Delta OAB\] có \[OA = OB = AB = R\] nên \[\Delta OAB\] là tam giác đều.
Khi đó \[\widehat {AOB} = \widehat {OAB} = 60^\circ .\]
Theo bài, điểm \[C\] nằm trên tia đối của tia \[BA\] sao cho \[BC = BA\] nên \[B\] là trung điểm \[AC.\]
Tam giác \[OAC\] có \[OB\] là đường trung tuyến ứng với \(AC\) và \[R = OB = BA = BC = \frac{{AC}}{2}\] nên tam giác \[OAC\] vuông tại \[O.\]
Do đó \[\widehat {AOC} = 90^\circ \] (1)
Vì vậy Do đó phương án C là kết luận đúng.
⦁ Tam giác \[OAC\] vuông tại \[O,\] có: \[\widehat {OAC} + \widehat {OCA} = 90^\circ .\]
Suy ra \[\widehat {OCA} = 90^\circ - \widehat {OAC} = 90^\circ - 60^\circ = 30^\circ \] (2)
Do đó phương án D là kết luận đúng.
⦁ Từ (1), (2), ta thu được \[\widehat {AOD} = 3\widehat {ACD}.\] Do đó phương án A là kết luận đúng.
⦁ Từ (1), ta suy ra \[OA \bot OE\] hay \[\widehat {AOE} = 90^\circ .\]
Ta có
Do đó phương án B là kết luận sai.
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. đựng nhau.
B. tiếp xúc ngoài.
C. ở ngoài nhau.
D. cắt nhau.
Lời giải
Đáp án đúng là: C
Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA = 2{\rm{\;cm}}.\)
Áp dụng định lí Pythagore cho \(\Delta ABC\) vuông tại \(B\) có:
\(A{C^2} = A{B^2} + B{C^2} = {2^2} + {2^2} = 8.\) Suy ra \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)
Vì \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD\) nên ta có:
⦁ \(AI = \frac{{AC}}{2} = \sqrt 2 {\rm{\;cm;}}\)
⦁ \(CJ = \frac{{CD}}{2} = 1{\rm{\;cm}}.\)
Ta có: \(AI + CJ = \sqrt 2 + 1{\rm{\;(cm)}}\) và \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)
Suy ra \(AI + CJ < AC\) (do \(1 + \sqrt 2 < 2\sqrt 2 )\) nên hai đường tròn ở ngoài nhau.
Vậy ta chọn phương án C.
Câu 2
A. \[5\pi {\rm{\;c}}{{\rm{m}}^2}.\]
B. \[3\pi {\rm{\;c}}{{\rm{m}}^2}.\]
C. \[1,5\pi {\rm{\;c}}{{\rm{m}}^2}.\]
D. \[2\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Đáp án đúng là: A
Diện tích hình vành khuyên giới hạn bởi hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right)\] là:
\[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{3^2} - {2^2}} \right) = 5\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Vậy ta chọn phương án A.
Câu 3
A. Chỉ (i) đúng.
B. Chỉ (ii) đúng.
C. Cả (i), (ii) đều đúng.
D. Cả (i), (ii) đều sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(OA \bot BC\).
B. \(OA\) là đường trung trực của \(BC\).
C. \(AB = AC\).
D. \(OA \bot BC\) tại trung điểm của \(AO\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\frac{{25\pi }}{2}{\rm{\;d}}{{\rm{m}}^2}.\]
B. \[\frac{{25\pi }}{{48}}{\rm{\;d}}{{\rm{m}}^2}.\]
C. \[\frac{{25\pi }}{4}{\rm{\;d}}{{\rm{m}}^2}.\]
D. \[\frac{{25\pi }}{{12}}{\rm{\;d}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Tam giác cân.
B. Tam giác vuông.
C. Tam giác vuông cân.
D. Tam giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.