Hai tiếp tuyến tại \(B\) và \(C\) của đường tròn \((O)\) cắt nhau tại \(A\). Khẳng định nào sau đây là sai?
A. \(OA \bot BC\).
B. \(OA\) là đường trung trực của \(BC\).
C. \(AB = AC\).
D. \(OA \bot BC\) tại trung điểm của \(AO\).
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Đáp án đúng là: D

Xét đường tròn tâm \(O\) có hai tiếp tuyến tại \(B\) và \(C\)cắt nhau tại \(A\) nên \(AB = AC\)(tính chất).
Lại có \(OB = OC\) nên \(OA\) là đường trung trực của đoạn \(BC\) hay \(OA \bot BC\) tại trung điểm của \(BC\).
Vậy phương án D là khẳng định sai. Ta chọn phương án D.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. đựng nhau.
B. tiếp xúc ngoài.
C. ở ngoài nhau.
D. cắt nhau.
Lời giải
Đáp án đúng là: C

Vì \(ABCD\) là hình vuông nên \(AB = BC = CD = DA = 2{\rm{\;cm}}.\)
Áp dụng định lí Pythagore cho \(\Delta ABC\) vuông tại \(B\) có:
\(A{C^2} = A{B^2} + B{C^2} = {2^2} + {2^2} = 8.\) Suy ra \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)
Vì \(I,\,\,J\) lần lượt là trung điểm của \(AC,\,\,CD\) nên ta có:
⦁ \(AI = \frac{{AC}}{2} = \sqrt 2 {\rm{\;cm;}}\)
⦁ \(CJ = \frac{{CD}}{2} = 1{\rm{\;cm}}.\)
Ta có: \(AI + CJ = \sqrt 2 + 1{\rm{\;(cm)}}\) và \(AC = 2\sqrt 2 {\rm{\;cm}}{\rm{.}}\)
Suy ra \(AI + CJ < AC\) (do \(1 + \sqrt 2 < 2\sqrt 2 )\) nên hai đường tròn ở ngoài nhau.
Vậy ta chọn phương án C.
Câu 2
A. \[5\pi {\rm{\;c}}{{\rm{m}}^2}.\]
B. \[3\pi {\rm{\;c}}{{\rm{m}}^2}.\]
C. \[1,5\pi {\rm{\;c}}{{\rm{m}}^2}.\]
D. \[2\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Đáp án đúng là: A
Diện tích hình vành khuyên giới hạn bởi hai đường tròn đồng tâm \[\left( {O;2{\rm{\;cm}}} \right)\] và \[\left( {O;3{\rm{\;cm}}} \right)\] là:
\[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{3^2} - {2^2}} \right) = 5\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Vậy ta chọn phương án A.
Câu 3
A. \[\widehat {AOD} = 3\widehat {ACD}.\]
B.
C.
D. \[\widehat {ACD} = 30^\circ .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Chỉ (i) đúng.
B. Chỉ (ii) đúng.
C. Cả (i), (ii) đều đúng.
D. Cả (i), (ii) đều sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[\frac{{25\pi }}{2}{\rm{\;d}}{{\rm{m}}^2}.\]
B. \[\frac{{25\pi }}{{48}}{\rm{\;d}}{{\rm{m}}^2}.\]
C. \[\frac{{25\pi }}{4}{\rm{\;d}}{{\rm{m}}^2}.\]
D. \[\frac{{25\pi }}{{12}}{\rm{\;d}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Tam giác cân.
B. Tam giác vuông.
C. Tam giác vuông cân.
D. Tam giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


 Nhắn tin Zalo
 Nhắn tin Zalo